Liquid bridge simulation of metal-wire laser additive manufacturing in microgravity environment

对流 雷诺数 液态金属 机械 材料科学 自然对流 不稳定性 瑞利-贝纳德对流 自然对流和联合对流 物理 复合材料 湍流
作者
Haiqiong Xie,Guoyu Wang,Xuan‐Ming Duan,Shuqian Fan,Xueping Ding
标识
DOI:10.1117/12.2516519
摘要

Unstable thermocapillary convection in metal liquid bridge is a typical phenomenon during the laser metal-wire additive manufacturing process in microgravity environment. The evolution and dynamic mechanism of the liquid bridge will influence the manufacturing process and quality for the forthcoming on-orbit space metal additive manufacturing. Therefore, it is very important to investigate the evolution and instability of thermocapillary convection in liquid bridges in microgravity. In present investigation, a numerical model is developed to reveal the characteristics of thermocapillary convection. The effects of aspect ratio and gravity on the critical Reynolds number for convection instability of thermocapillary convection in metal (Ti6Al4V) liquid bridge are investigated numerically. The results indicate that the critical Reynolds number for convection instability decreases with the increase of aspect ratio number at first, and then increases both in the gravity or microgravity environment. The numerical results also reveal that the critical Reynolds number for convection instability under gravity environment with natural convection in metal liquid bridge is larger than microgravity environment. The research shows that the influence of microgravity leads to a distinctly different behaviour of thermocapillary convection in metal liquid bridge compared to the gravity environment. A more comprehensive study will be conducted to cover the parameter space more systematically to identify the factors which significantly influence the stability of the thermocapillary convection in metal liquid bridge under microgravity environment, which is important for the on-orbit space metal additive manufacturing.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
寒冷的天亦完成签到,获得积分10
3秒前
小陈1122完成签到,获得积分10
4秒前
超人爱吃菠菜完成签到,获得积分10
5秒前
8秒前
绿鬼蓝完成签到 ,获得积分10
9秒前
科研通AI2S应助ss采纳,获得10
9秒前
潇洒的诗桃完成签到,获得积分0
11秒前
NexusExplorer应助sunshine采纳,获得10
12秒前
陈爽er发布了新的文献求助10
13秒前
HAO完成签到,获得积分10
14秒前
科研通AI2S应助陈爽er采纳,获得10
18秒前
19秒前
19秒前
19秒前
20秒前
大模型应助tidongzhiwu采纳,获得10
20秒前
研友_LwlRen完成签到 ,获得积分10
21秒前
materials_发布了新的文献求助10
22秒前
称心的西牛完成签到 ,获得积分10
22秒前
踏实的无敌完成签到,获得积分10
22秒前
栀璃鸳挽发布了新的文献求助30
24秒前
Yogita完成签到,获得积分10
24秒前
dasheng_发布了新的文献求助10
24秒前
情怀应助超爱茶多酚采纳,获得10
25秒前
25秒前
量子星尘发布了新的文献求助10
27秒前
大地上的鱼完成签到,获得积分10
27秒前
28秒前
29秒前
29秒前
materials_完成签到,获得积分10
29秒前
30秒前
30秒前
30秒前
量子星尘发布了新的文献求助10
30秒前
LjXiong完成签到,获得积分10
32秒前
33秒前
xiaoE发布了新的文献求助10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5734681
求助须知:如何正确求助?哪些是违规求助? 5355580
关于积分的说明 15327525
捐赠科研通 4879249
什么是DOI,文献DOI怎么找? 2621785
邀请新用户注册赠送积分活动 1570998
关于科研通互助平台的介绍 1527750