Contamination in Low Microbial Biomass Microbiome Studies: Issues and Recommendations

微生物群 生物 污染 计算生物学 基因组 DNA测序 生物技术 生化工程 生态学 遗传学 DNA 基因 工程类
作者
Raphael Eisenhofer,Jeremiah J. Minich,Clarisse Marotz,Alan Cooper,Rob Knight,Laura S. Weyrich
出处
期刊:Trends in Microbiology [Elsevier]
卷期号:27 (2): 105-117 被引量:750
标识
DOI:10.1016/j.tim.2018.11.003
摘要

There is increasing interest in applying metagenomic techniques to find correlations between microorganisms and disease. Metagenomic techniques are highly sensitive and can detect contaminant DNA (DNA from sources other than the samples under study) and cross-contamination (DNA exchange between samples). Recent studies have shown that contaminant DNA and cross-contamination can confound metagenomic studies, especially for sample types that have low microbial biomass. There is an urgent need for the field to adopt authentication criteria to prevent future metagenomic studies from falling prey to the pitfalls of contaminant DNA and cross-contamination. Next-generation sequencing approaches in microbiome research have allowed surveys of microbial communities, their genomes, and their functions with higher sensitivity than ever before. However, this sensitivity is a double-edged sword because these tools also efficiently detect contaminant DNA and cross-contamination, which can confound the interpretation of microbiome data. Therefore, there is an urgent need to integrate key controls into microbiome research to improve the integrity of microbiome studies. Here, we review how contaminant DNA and cross-contamination arise within microbiome studies and discuss their negative impacts, especially during the analysis of low microbial biomass samples. We then identify several key measures that researchers can implement to reduce the impact of contaminant DNA and cross-contamination during microbiome research. We put forward a set of minimal experimental criteria, the ‘RIDE’ checklist, to improve the validity of future low microbial biomass research. Next-generation sequencing approaches in microbiome research have allowed surveys of microbial communities, their genomes, and their functions with higher sensitivity than ever before. However, this sensitivity is a double-edged sword because these tools also efficiently detect contaminant DNA and cross-contamination, which can confound the interpretation of microbiome data. Therefore, there is an urgent need to integrate key controls into microbiome research to improve the integrity of microbiome studies. Here, we review how contaminant DNA and cross-contamination arise within microbiome studies and discuss their negative impacts, especially during the analysis of low microbial biomass samples. We then identify several key measures that researchers can implement to reduce the impact of contaminant DNA and cross-contamination during microbiome research. We put forward a set of minimal experimental criteria, the ‘RIDE’ checklist, to improve the validity of future low microbial biomass research. DNA from sources other than the sample(s) under study (e.g., DNA from reagents or researchers performing laboratory work). an umbrella term encompassing both contaminant DNA and cross-contamination (see below). DNA exchange between samples within a study (e.g., accidental movement of DNA between different sample tubes during DNA extraction). a negative control consisting of an empty tube/well that is processed alongside biological samples during DNA extraction and allows for the detection of contaminant DNA introduced during DNA extraction. a positive control consisting of serially diluted cells of known type(s) that is processed alongside biological samples during DNA extraction and allows for determination of the limit of detection, monitoring of extraction efficiency, and quantification of cross-contamination during DNA extraction. a biological sample that contains similar quantities of target microbial DNA in the sample compared to negative controls (e.g., ≤10 000 microbial cells [19Salter S.J. et al.Reagent and laboratory contamination can critically impact sequence-based microbiome analyses.BMC Biol. 2014; 12: 87Crossref PubMed Scopus (1797) Google Scholar]). the microorganisms of a specific habitat, their genomes, and the surrounding environmental conditions [84Marchesi J.R. Ravel J. The vocabulary of microbiome research: a proposal.Microbiome. 2015; 3: 31Crossref PubMed Google Scholar]. the assemblage of microorganisms present in a defined environment [84Marchesi J.R. Ravel J. The vocabulary of microbiome research: a proposal.Microbiome. 2015; 3: 31Crossref PubMed Google Scholar]. a negative control made by preparing an amplification or library preparation reaction without input template (i.e., sample DNA) that is processed alongside biological samples and allows for the detection contaminant DNA during library preparation/PCR amplification. a positive control consisting of serially diluted DNA from known organism type(s) that are processed alongside biological samples during amplification or library preparation and allows for determination of the limit of detection, monitoring of library preparation efficiency, and quantification of cross-contamination during library preparation. report methodology, include controls, determine the level of contamination, and explore the impacts of contamination in downstream analysis; a minimum standards checklist for low microbial biomass microbiome studies. a negative control consisting of an empty tube that is processed alongside the collection of biological samples. Allows the detection of contaminant DNA introduced during the sampling procedure (e.g., airborne, swabs, preservatives).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
都是应助sasa采纳,获得50
刚刚
兜兜窦完成签到,获得积分10
1秒前
fffff完成签到,获得积分10
1秒前
科目三应助小圆圈采纳,获得10
2秒前
chenyiyi完成签到,获得积分10
2秒前
bathygobius完成签到,获得积分10
2秒前
光仔发布了新的文献求助10
3秒前
研友_Z60NmL完成签到,获得积分10
4秒前
zxs完成签到,获得积分10
4秒前
5秒前
含蓄的觅海完成签到,获得积分10
5秒前
英俊的铭应助chenyiyi采纳,获得10
6秒前
谦让小松鼠完成签到 ,获得积分10
6秒前
共享精神应助萧水白采纳,获得100
6秒前
善学以致用应助武雨珍采纳,获得10
8秒前
Liiw完成签到,获得积分10
8秒前
zxs发布了新的文献求助10
8秒前
10秒前
10秒前
秀丽的听安完成签到,获得积分10
11秒前
大方的半莲完成签到,获得积分10
12秒前
13秒前
吾酒完成签到,获得积分10
13秒前
zero完成签到 ,获得积分10
15秒前
zzkka完成签到,获得积分10
15秒前
16秒前
emma发布了新的文献求助10
16秒前
民族风发布了新的文献求助30
17秒前
搞怪的靖雁完成签到,获得积分10
17秒前
小小徐完成签到,获得积分20
18秒前
光仔完成签到,获得积分20
18秒前
科研3c发布了新的文献求助10
19秒前
一只呆完成签到 ,获得积分10
21秒前
UNIQUE完成签到,获得积分10
22秒前
林翊完成签到,获得积分10
23秒前
Owen应助emma采纳,获得10
23秒前
小小徐发布了新的文献求助10
24秒前
Qi完成签到,获得积分20
25秒前
科研通AI2S应助茶博士采纳,获得10
26秒前
南瓜难应助跳跃的若灵采纳,获得10
26秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148139
求助须知:如何正确求助?哪些是违规求助? 2799228
关于积分的说明 7833916
捐赠科研通 2456390
什么是DOI,文献DOI怎么找? 1307237
科研通“疑难数据库(出版商)”最低求助积分说明 628119
版权声明 601655