Band-fluctuations model for the fundamental absorption of crystalline and amorphous semiconductors: a dimensionless joint density of states analysis

无量纲量 非晶半导体 半导体 凝聚态物理 接头(建筑物) 无定形固体 材料科学 态密度 物理 化学 量子力学 光电子学 结晶学 工程类 建筑工程
作者
Jorge Andrés Guerra,Alvaro Tejada,Jan Amaru Töfflinger,Rolf Grieseler,Lars Korte
出处
期刊:Journal of Physics D [IOP Publishing]
卷期号:52 (10): 105303-105303 被引量:23
标识
DOI:10.1088/1361-6463/aaf963
摘要

We develop a band-fluctuations model which describes the absorption coefficient in the fundamental absorption region for direct and indirect electronic transitions in disordered semiconductor materials. The model accurately describes both the Urbach tail and absorption edge regions observed in such materials near the mobility edge in a single equation with only three fitting parameters. An asymptotic analysis leads to the universally observed exponential tail below the bandgap energy and to the absorption edge model at zero Kelvin above it, for either direct or indirect electronic transitions. The latter feature allows the discrimination between the absorption edge and absorption tails, thus yielding more accurate bandgap values when fitting optical absorption data. We examine the general character of the model using a dimensionless joint density of states formalism with a quantitative analysis of a large amount of optical absorption data. Both heavily doped p-type GaAs and nano-crystalline Ga1-xMnxN, as examples for direct bandgap materials, as well as amorphous Si:Hx, SiC:Hx and SiNx, are modeled successfully with this approach. We contrast our model with previously reported empirical models, showing in our case a suitable absorption coefficient shape capable of describing various distinct materials while also maintaining the universality of the exponential absorption tail and absorption edge.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Benji发布了新的文献求助10
1秒前
从容不乐完成签到,获得积分10
1秒前
2秒前
搜集达人应助小初采纳,获得10
2秒前
科研通AI6应助山雷采纳,获得10
3秒前
莫名完成签到 ,获得积分10
3秒前
无限秋灵发布了新的文献求助10
3秒前
5秒前
5秒前
顾矜应助撒旦asd采纳,获得10
6秒前
英俊的铭应助ww采纳,获得10
6秒前
6秒前
Joseph_sss完成签到 ,获得积分10
6秒前
lixia完成签到 ,获得积分10
7秒前
水眉音发布了新的文献求助10
7秒前
MchemG应助吴先生采纳,获得10
8秒前
123发布了新的文献求助10
9秒前
WNL发布了新的文献求助100
9秒前
sherrymasha完成签到,获得积分10
10秒前
阿威完成签到,获得积分10
10秒前
贪玩的秋柔应助炸鱼饼采纳,获得10
10秒前
cocopan发布了新的文献求助10
10秒前
小于子88完成签到,获得积分10
10秒前
yibo完成签到,获得积分10
10秒前
mou完成签到,获得积分10
11秒前
Ariel完成签到,获得积分10
11秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
13秒前
13秒前
14秒前
Benji完成签到,获得积分10
14秒前
14秒前
14秒前
15秒前
汉堡包应助简柠采纳,获得10
16秒前
16秒前
科目三应助星期天采纳,获得10
17秒前
真云完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608256
求助须知:如何正确求助?哪些是违规求助? 4692810
关于积分的说明 14875754
捐赠科研通 4717042
什么是DOI,文献DOI怎么找? 2544147
邀请新用户注册赠送积分活动 1509105
关于科研通互助平台的介绍 1472802