数学
巴拿赫空间
凸性
矢量优化
变分不等式
李普希茨连续性
应用数学
约束(计算机辅助设计)
数学优化
空格(标点符号)
向量空间
集合(抽象数据类型)
对偶(序理论)
最优化问题
数理经济学
数学分析
纯数学
计算机科学
多群优化
操作系统
经济
金融经济学
程序设计语言
几何学
标识
DOI:10.1080/01630563.2018.1501580
摘要
Necessary optimality conditions for local Henig efficient and superefficient solutions of vector equilibrium problems involving equality, inequality, and set constraints in Banach space with locally Lipschitz functions are established under a suitable constraint qualification via the Michel–Penot subdifferentials. With assumptions on generalized convexity, necessary conditions for Henig efficiency and superefficiency become sufficient ones. Some applications to vector variational inequalities and vector optimization problems are given as well.
科研通智能强力驱动
Strongly Powered by AbleSci AI