材料科学
钙钛矿(结构)
能量转换效率
结晶
热稳定性
加合物
化学工程
载流子寿命
纳米技术
光电子学
有机化学
硅
工程类
化学
作者
Guannan Yin,Huan Zhao,Hong Jiang,Shihao Yuan,Tianqi Niu,Kui Zhao,Zhike Liu,Shengzhong Liu
标识
DOI:10.1002/adfm.201803269
摘要
Abstract The optoelectronic properties of perovskite films are closely related to the film quality, so depositing dense, uniform, and stable perovskite films is crucial for fabricating high‐performance perovskite solar cells (PSCs). CsPbI 2 Br perovskite, prized for its superb stability toward light soaking and thermal aging, has received a great deal of attention recently. However, the air instability and poor performance of CsPbI 2 Br PSCs are hindering its further progress. Here, an approach is reported for depositing high‐quality CsPbI 2 Br films via the Lewis base adducts PbI 2 (DMSO) and PbBr 2 (DMSO) as precursors to slow the crystallization of the perovskite film. This process produces CsPbI 2 Br films with large‐scale crystalline grains, flat surfaces, low defects, and long carrier lifetimes. More interestingly, PbI 2 (DMSO) and PbBr 2 (DMSO) adducts could significantly improve the stability of CsPbI 2 Br films in air. Using films prepared by this technique, a power conversion efficiency (PCE) of 14.78% is obtained in CsPbI 2 Br PSCs, which is the highest PCE value reported for CsPbI 2 Br‐based PSCs to date. In addition, the PSCs based on DMSO adducts show an extended operational lifetime in air. These excellent performances indicate that preparing high‐quality inorganic perovskite films by using DMSO adducts will be a potential method for improving the performance of other inorganic PSCs.
科研通智能强力驱动
Strongly Powered by AbleSci AI