材料科学
粉末冶金
热等静压
微观结构
复合材料
纳米复合材料
扫描电子显微镜
热压
冶金
碳纤维
复合数
作者
Rui Shu,Xiaosong Jiang,Jiaxin Jiang,Degui Zhu
出处
期刊:MP MATERIALPRUEFUNG - MP MATERIALS TESTING
[De Gruyter]
日期:2018-08-30
卷期号:60 (9): 809-817
被引量:10
摘要
Abstract Cu-based powder metallurgy friction material is technically one of the most important powder metallurgy friction materials due to its high conductivity, high strength, good thermal properties and wear endurance. In this paper, nano-carbon reinforced Cu-based powder metallurgy friction materials were prepared by hot isostatic pressing (HIP). Microstructure and mechanical properties of nano-carbon reinforced Cu-based powder metallurgy friction materials with different nano-carbon content were systematically investigated. The microstructures of the nanocomposites were examined by optical microscopy (OM), X-ray diffraction (XRD), back scattered electron imaging (BSE), scanning electron microscope (SEM) equipped with an energy dispersive spectrometer (EDS). Mechanical properties were determined from micro-hardness, shear strength and compressive strength. The fracture and strengthening mechanisms of nano-carbon reinforced Cu-based powder metallurgy friction materials are explored on the basis of the microstructure and composition of the nanocomposites along with the formation and function of the interface. The nano-carbon mainly enhances the nanocomposites by load transfer and obstruction of dislocation. The synergistic effect of multi-walled carbon nanotubes (MWCNTs)and graphene improves the dispersion but hinders the densification process. The interfaces between carbon and copper are the main source of cracks, and the nanocomposites are mainly composed of brittle fracture.
科研通智能强力驱动
Strongly Powered by AbleSci AI