The impact of individual patient data in a network meta‐analysis: An investigation into parameter estimation and model selection

偏差信息准则 协变量 计算机科学 荟萃分析 统计 选型 计量经济学 骨料(复合) 排名(信息检索) 综合数据 缺少数据 偏差(统计) 观察研究 估计 选择(遗传算法) 贝叶斯概率 机器学习 数学 人工智能 贝叶斯推理 医学 内科学 复合材料 经济 管理 材料科学
作者
Joy Leahy,Aisling O'Leary,Nezam H. Afdhal,Emma Gray,Scott Milligan,Malte H. Wehmeyer,Cathal Walsh
出处
期刊:Research Synthesis Methods [Wiley]
卷期号:9 (3): 441-469 被引量:11
标识
DOI:10.1002/jrsm.1305
摘要

The use of individual patient data (IPD) in network meta-analysis (NMA) is becoming increasingly popular. However, as most studies do not report IPD, most NMAs are performed using aggregate data for at least some, if not all, of the studies. We investigate the benefits of including varying proportions of IPD studies in an NMA. Several models have previously been developed for including both aggregate data and IPD in the same NMA. We performed a simulation study based on these models to examine the impact of additional IPD studies on the accuracy and precision of the estimates of both the treatment effect and the covariate effect. We also compared the deviance information criterion (DIC) between models to assess model fit. An increased proportion of IPD resulted in more accurate and precise estimates for most models and datasets. However, the coverage probability sometimes decreased when the model was misspecified. The use of IPD leads to greater differences in DIC, which allows us choose the correct model more often. We analysed a Hepatitis C network consisting of 3 IPD observational studies. The ranking of treatments remained the same for all models and datasets. We observed similar results to the simulation study: The use of IPD leads to differences in DIC and more precise estimates for the covariate effect. However, IPD sometimes increased the posterior SD of the treatment effect estimate, which may indicate between study heterogeneity. We recommend that IPD should be used where possible, especially for assessing model fit.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
时倾发布了新的文献求助10
刚刚
深情安青应助傻瓜子采纳,获得10
1秒前
sunwb发布了新的文献求助10
2秒前
3秒前
科目三应助zzy采纳,获得10
4秒前
赘婿应助下凡采纳,获得10
4秒前
4秒前
5秒前
7秒前
7秒前
慢_发布了新的文献求助10
8秒前
9秒前
9秒前
不安青牛应助CZK采纳,获得10
10秒前
XIEMIN发布了新的文献求助10
10秒前
10秒前
FY发布了新的文献求助10
10秒前
11秒前
11秒前
12秒前
小咪完成签到 ,获得积分10
12秒前
wangw061完成签到,获得积分10
12秒前
千寻完成签到,获得积分10
13秒前
13秒前
14秒前
上官若男应助孙亦沈采纳,获得10
14秒前
滚去看书发布了新的文献求助30
15秒前
15秒前
wuuu_ruby发布了新的文献求助20
15秒前
16秒前
16秒前
16秒前
16秒前
wangw061发布了新的文献求助10
16秒前
Hello应助FY采纳,获得10
17秒前
17秒前
witting发布了新的文献求助10
17秒前
17秒前
优美姝完成签到,获得积分10
17秒前
11发布了新的文献求助10
19秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459163
求助须知:如何正确求助?哪些是违规求助? 3053710
关于积分的说明 9037991
捐赠科研通 2742977
什么是DOI,文献DOI怎么找? 1504606
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694663