Improving Sequence-Based Prediction of Protein–Peptide Binding Residues by Introducing Intrinsic Disorder and a Consensus Method

序列(生物学) 共识序列 计算机科学 计算生物学 肽序列 化学 生物 生物化学 基因
作者
Zijuan Zhao,Zhenling Peng,Jianyi Yang
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:58 (7): 1459-1468 被引量:52
标识
DOI:10.1021/acs.jcim.8b00019
摘要

Protein-peptide interaction is crucial for many cellular processes. It is difficult to determine the interaction by experiments as peptides are often very flexible in structure. Accurate sequence-based prediction of peptide-binding residues can facilitate the study of this interaction. In this work, we developed two novel sequence-based methods SVMpep and PepBind to identify the peptide-binding residues. Recent studies demonstrate that the protein-peptide binding is closely associated with intrinsic disorder. We thus introduced intrinsic disorder in our feature design and developed the ab initio method SVMpep. Experiments show that intrinsic disorder contributes to 1.2-5.2% improvement in area under the receiver operating characteristic curve (AUC). Comparison to the recent sequence-based method SPRINT-Seq reveals that SVMpep improves the AUC and Matthews correlation coefficient (MCC) by at least 7.7% and 70%, respectively. In addition, by combining SVMpep with two template-based methods S-SITE and TM-SITE, we next proposed the consensus-based method PepBind. Remarkably, compared with the latest structure-based method SPRINT-Str, PepBind improves the AUC and MCC by 1.7% and 28.3%, respectively, on the same independent test set of SPRINT-Str. The success of PepBind is attributed to the improved prediction of the ab initio method SVMpep by introducing intrinsic disorder and the consensus prediction by combining three complementary methods. A web server that implements the proposed methods is freely available at http://yanglab.nankai.edu.cn/PepBind/ .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
morii发布了新的文献求助10
刚刚
刚刚
xiao发布了新的文献求助50
刚刚
1秒前
科研通AI2S应助言宴采纳,获得10
1秒前
科研通AI2S应助Res_M采纳,获得10
2秒前
熹熹完成签到,获得积分10
3秒前
123发布了新的文献求助10
3秒前
3秒前
斯文问旋发布了新的文献求助10
3秒前
无花果应助YIN采纳,获得10
4秒前
5秒前
6秒前
oceanao应助wb采纳,获得10
6秒前
爆米花应助HR112采纳,获得10
6秒前
8秒前
梦呐完成签到,获得积分20
9秒前
10秒前
10秒前
研友_LBoggn发布了新的文献求助10
11秒前
周小博发布了新的文献求助10
12秒前
cnspower给cnspower的求助进行了留言
12秒前
xixi发布了新的文献求助30
12秒前
Sweger发布了新的文献求助30
13秒前
文文文完成签到,获得积分10
14秒前
justin完成签到,获得积分10
14秒前
充电宝应助丝丝采纳,获得10
14秒前
阔达尔芙发布了新的文献求助10
15秒前
aibi发布了新的文献求助10
15秒前
独特的鹅完成签到,获得积分10
17秒前
SciGPT应助Jeremy采纳,获得10
18秒前
18秒前
我是老大应助缓慢海亦采纳,获得10
20秒前
传奇3应助阔达白筠采纳,获得10
20秒前
123关闭了123文献求助
20秒前
研友_VZG7GZ应助nyc采纳,获得10
20秒前
tianzml0应助斯文问旋采纳,获得20
21秒前
阔达尔芙完成签到,获得积分10
21秒前
周小博完成签到,获得积分10
21秒前
林薯条完成签到,获得积分10
24秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164253
求助须知:如何正确求助?哪些是违规求助? 2814985
关于积分的说明 7907327
捐赠科研通 2474608
什么是DOI,文献DOI怎么找? 1317573
科研通“疑难数据库(出版商)”最低求助积分说明 631857
版权声明 602228