Improving Sequence-Based Prediction of Protein–Peptide Binding Residues by Introducing Intrinsic Disorder and a Consensus Method

序列(生物学) 共识序列 计算机科学 计算生物学 肽序列 化学 生物 生物化学 基因
作者
Zijuan Zhao,Zhenling Peng,Jianyi Yang
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:58 (7): 1459-1468 被引量:52
标识
DOI:10.1021/acs.jcim.8b00019
摘要

Protein-peptide interaction is crucial for many cellular processes. It is difficult to determine the interaction by experiments as peptides are often very flexible in structure. Accurate sequence-based prediction of peptide-binding residues can facilitate the study of this interaction. In this work, we developed two novel sequence-based methods SVMpep and PepBind to identify the peptide-binding residues. Recent studies demonstrate that the protein-peptide binding is closely associated with intrinsic disorder. We thus introduced intrinsic disorder in our feature design and developed the ab initio method SVMpep. Experiments show that intrinsic disorder contributes to 1.2-5.2% improvement in area under the receiver operating characteristic curve (AUC). Comparison to the recent sequence-based method SPRINT-Seq reveals that SVMpep improves the AUC and Matthews correlation coefficient (MCC) by at least 7.7% and 70%, respectively. In addition, by combining SVMpep with two template-based methods S-SITE and TM-SITE, we next proposed the consensus-based method PepBind. Remarkably, compared with the latest structure-based method SPRINT-Str, PepBind improves the AUC and MCC by 1.7% and 28.3%, respectively, on the same independent test set of SPRINT-Str. The success of PepBind is attributed to the improved prediction of the ab initio method SVMpep by introducing intrinsic disorder and the consensus prediction by combining three complementary methods. A web server that implements the proposed methods is freely available at http://yanglab.nankai.edu.cn/PepBind/ .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
舒服的幻梅完成签到,获得积分10
1秒前
2秒前
aabbcc发布了新的文献求助10
3秒前
英俊的铭应助张雯思采纳,获得10
5秒前
脑洞疼应助张雯思采纳,获得10
5秒前
隐形曼青应助张雯思采纳,获得10
5秒前
搜集达人应助张雯思采纳,获得10
5秒前
深情安青应助张雯思采纳,获得10
5秒前
思源应助张雯思采纳,获得10
5秒前
华仔应助张雯思采纳,获得10
6秒前
上官若男应助张雯思采纳,获得30
6秒前
YamDaamCaa应助张雯思采纳,获得30
6秒前
马康辉应助张雯思采纳,获得10
6秒前
6秒前
鱼啵啵发布了新的文献求助10
7秒前
JamesPei应助浮云采纳,获得10
9秒前
蝌蚪发布了新的文献求助10
9秒前
李爱国应助yuebaoji采纳,获得10
12秒前
12秒前
呵呵完成签到,获得积分10
14秒前
言西完成签到,获得积分10
15秒前
EuitNeck完成签到,获得积分10
16秒前
16秒前
星辰大海应助蝌蚪采纳,获得10
17秒前
Zhou完成签到,获得积分10
17秒前
17秒前
18秒前
量子星尘发布了新的文献求助10
18秒前
思源应助无情的水蓉采纳,获得30
18秒前
19秒前
20秒前
20秒前
EuitNeck发布了新的文献求助20
21秒前
乌梅不乌发布了新的文献求助10
21秒前
旋转的龙发布了新的文献求助10
22秒前
浮云发布了新的文献求助10
22秒前
明理依云发布了新的文献求助10
23秒前
lzj发布了新的文献求助10
24秒前
yuebaoji发布了新的文献求助10
25秒前
27秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979628
求助须知:如何正确求助?哪些是违规求助? 3523569
关于积分的说明 11218108
捐赠科研通 3261093
什么是DOI,文献DOI怎么找? 1800402
邀请新用户注册赠送积分活动 879099
科研通“疑难数据库(出版商)”最低求助积分说明 807163