Improving Sequence-Based Prediction of Protein–Peptide Binding Residues by Introducing Intrinsic Disorder and a Consensus Method

序列(生物学) 共识序列 计算机科学 计算生物学 肽序列 化学 生物 生物化学 基因
作者
Zijuan Zhao,Zhenling Peng,Jianyi Yang
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:58 (7): 1459-1468 被引量:52
标识
DOI:10.1021/acs.jcim.8b00019
摘要

Protein-peptide interaction is crucial for many cellular processes. It is difficult to determine the interaction by experiments as peptides are often very flexible in structure. Accurate sequence-based prediction of peptide-binding residues can facilitate the study of this interaction. In this work, we developed two novel sequence-based methods SVMpep and PepBind to identify the peptide-binding residues. Recent studies demonstrate that the protein-peptide binding is closely associated with intrinsic disorder. We thus introduced intrinsic disorder in our feature design and developed the ab initio method SVMpep. Experiments show that intrinsic disorder contributes to 1.2-5.2% improvement in area under the receiver operating characteristic curve (AUC). Comparison to the recent sequence-based method SPRINT-Seq reveals that SVMpep improves the AUC and Matthews correlation coefficient (MCC) by at least 7.7% and 70%, respectively. In addition, by combining SVMpep with two template-based methods S-SITE and TM-SITE, we next proposed the consensus-based method PepBind. Remarkably, compared with the latest structure-based method SPRINT-Str, PepBind improves the AUC and MCC by 1.7% and 28.3%, respectively, on the same independent test set of SPRINT-Str. The success of PepBind is attributed to the improved prediction of the ab initio method SVMpep by introducing intrinsic disorder and the consensus prediction by combining three complementary methods. A web server that implements the proposed methods is freely available at http://yanglab.nankai.edu.cn/PepBind/ .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Shinchan完成签到,获得积分10
刚刚
周星星完成签到,获得积分10
刚刚
浮游应助白金采纳,获得10
1秒前
barrychow完成签到,获得积分10
1秒前
1秒前
1秒前
zhang完成签到,获得积分10
1秒前
2秒前
冷静雨发布了新的文献求助10
2秒前
aller发布了新的文献求助10
2秒前
2秒前
master完成签到,获得积分10
3秒前
端庄向雁发布了新的文献求助10
3秒前
小杭76应助威武千青采纳,获得10
3秒前
3秒前
丘比特应助百事可乐采纳,获得10
3秒前
善学以致用应助阿九采纳,获得10
4秒前
张花生发布了新的文献求助10
4秒前
十三发布了新的文献求助10
4秒前
ss完成签到,获得积分10
4秒前
5秒前
xiu_er发布了新的文献求助10
5秒前
归尘发布了新的文献求助10
5秒前
6a发布了新的文献求助10
6秒前
天真少年完成签到,获得积分10
7秒前
ouLniM完成签到 ,获得积分10
7秒前
科研通AI5应助赵田采纳,获得10
8秒前
爆米花应助han采纳,获得10
8秒前
8秒前
9秒前
9秒前
qiuzi完成签到,获得积分10
9秒前
搜集达人应助优美巨人采纳,获得10
9秒前
10秒前
10秒前
10秒前
施宇宙完成签到,获得积分10
10秒前
科研入门小萌新完成签到,获得积分10
10秒前
夜安完成签到 ,获得积分10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4942644
求助须知:如何正确求助?哪些是违规求助? 4208241
关于积分的说明 13081377
捐赠科研通 3987311
什么是DOI,文献DOI怎么找? 2183028
邀请新用户注册赠送积分活动 1198648
关于科研通互助平台的介绍 1111020