Multifunctional structural design of graphene thermoelectrics by Bayesian optimization

热电材料 热电效应 材料科学 之字形的 热导率 塞贝克系数 功勋 贝叶斯优化 石墨烯 纳米技术 声子 凝聚态物理 物理 数学优化 光电子学 数学 热力学 复合材料 几何学
作者
Masaki Yamawaki,Masato Ohnishi,Shenghong Ju,Junichiro Shiomi
出处
期刊:Science Advances [American Association for the Advancement of Science (AAAS)]
卷期号:4 (6) 被引量:122
标识
DOI:10.1126/sciadv.aar4192
摘要

Materials development often confronts a dilemma as it needs to satisfy multifunctional, often conflicting, demands. For example, thermoelectric conversion requires high electrical conductivity, a high Seebeck coefficient, and low thermal conductivity, despite the fact that these three properties are normally closely correlated. Nanostructuring techniques have been shown to break the correlations to some extent; however, optimal design has been a major challenge due to the extraordinarily large degrees of freedom in the structures. By taking graphene nanoribbons (GNRs) as a representative thermoelectric material, we carried out structural optimization by alternating multifunctional (phonon and electron) transport calculations and Bayesian optimization to resolve the trade-off. As a result, we have achieved multifunctional structural optimization with an efficiency more than five times that achieved by random search. The obtained GNRs with optimized antidots significantly enhance the thermoelectric figure of merit by up to 11 times that of the pristine GNR. Knowledge of the optimal structure further provides new physical insights that independent tuning of electron and phonon transport properties can be realized by making use of zigzag edge states and aperiodic nanostructuring. The demonstrated optimization framework is also useful for other multifunctional problems in various applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
祗想静静嘚完成签到 ,获得积分10
刚刚
小卢同学发布了新的文献求助10
2秒前
Lee完成签到,获得积分10
3秒前
3秒前
5秒前
谦让天蓝完成签到,获得积分20
6秒前
完美世界应助梦幻采纳,获得10
7秒前
zhuangzhu完成签到,获得积分10
7秒前
pipipi完成签到,获得积分10
8秒前
fyl发布了新的文献求助10
8秒前
tanhaili完成签到,获得积分10
9秒前
CodeCraft应助Sara采纳,获得30
11秒前
11秒前
平常煎饼发布了新的文献求助30
11秒前
浅尝离白应助jinboy采纳,获得10
12秒前
CodeCraft应助姜思意采纳,获得10
14秒前
机灵的冰夏完成签到,获得积分10
14秒前
14秒前
非泽完成签到,获得积分10
15秒前
秋水仙碱关注了科研通微信公众号
15秒前
RUOXI完成签到,获得积分10
15秒前
15秒前
niu关注了科研通微信公众号
16秒前
16秒前
Pf1314完成签到,获得积分10
17秒前
Orange应助颜千琴采纳,获得10
18秒前
18秒前
自然怀寒完成签到,获得积分10
19秒前
20秒前
俏皮元珊完成签到 ,获得积分10
20秒前
默图发布了新的文献求助10
20秒前
梦幻发布了新的文献求助10
21秒前
能干的谷蕊完成签到 ,获得积分10
21秒前
非泽发布了新的文献求助10
21秒前
懵懂的愫完成签到 ,获得积分10
21秒前
传奇3应助能干的邹采纳,获得10
21秒前
搜集达人应助AFong采纳,获得10
22秒前
22秒前
乐乐应助sing采纳,获得10
22秒前
Tian完成签到,获得积分10
23秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138252
求助须知:如何正确求助?哪些是违规求助? 2789208
关于积分的说明 7790538
捐赠科研通 2445551
什么是DOI,文献DOI怎么找? 1300565
科研通“疑难数据库(出版商)”最低求助积分说明 625925
版权声明 601053