材料科学
超级电容器
微功率
复合数
微电子
纳米技术
制作
细菌纤维素
电容
复合材料
电极
纤维素
物理
工程类
医学
病理
物理化学
功率(物理)
量子力学
化学
化学工程
替代医学
作者
Shangqing Jiao,Aiguo Zhou,Mingzai Wu,Haibo Hu
标识
DOI:10.1002/advs.201900529
摘要
Abstract Stretchable micropower sources with high energy density and stability under repeated tensile deformation are key components of flexible/wearable microelectronics. Herein, through the combination of strain engineering and modulation of the interlayer spacing, freestanding and lightweight MXene/bacterial cellulose (BC) composite papers with excellent mechanical stability and a high electrochemical performance are first designed and prepared via a facile all‐solution‐based paper‐making process. Following a simple laser‐cutting kirigami patterning process, bendable, twistable, and stretchable all‐solid‐state micro‐supercapacitor arrays (MSCAs) are further fabricated. As expected, benefiting from the high‐performance MXene/BC composite electrodes and rational sectional structural design, the resulting kirigami MSCAs exhibit a high areal capacitance of 111.5 mF cm −2 , and are stable upon stretching of up to 100% elongation, and in bent or twisted states. The demonstrated combination of an all‐solution‐based MXene/BC composite paper‐making method and an easily manipulated laser‐cutting kirigami patterning technique enables the fabrication of MXene‐based deformable all‐solid‐state planar MSCAs in a simple and efficient manner while achieving excellent areal performance metrics and high stretchability, making them promising micropower sources that are compatible with flexible/wearable microelectronics.
科研通智能强力驱动
Strongly Powered by AbleSci AI