Advances in Auto-Segmentation

分割 深度学习 人工智能 卷积神经网络 计算机科学 图像分割 医学 过程(计算) 机器学习 计算机视觉 模式识别(心理学) 操作系统
作者
Carlos Cárdenas,Jinzhong Yang,Brian Anderson,Laurence E. Court,Kristy Brock
出处
期刊:Seminars in Radiation Oncology [Elsevier]
卷期号:29 (3): 185-197 被引量:343
标识
DOI:10.1016/j.semradonc.2019.02.001
摘要

Manual image segmentation is a time-consuming task routinely performed in radiotherapy to identify each patient's targets and anatomical structures. The efficacy and safety of the radiotherapy plan requires accurate segmentations as these regions of interest are generally used to optimize and assess the quality of the plan. However, reports have shown that this process can be subject to significant inter- and intraobserver variability. Furthermore, the quality of the radiotherapy treatment, and subsequent analyses (ie, radiomics, dosimetric), can be subject to the accuracy of these manual segmentations. Automatic segmentation (or auto-segmentation) of targets and normal tissues is, therefore, preferable as it would address these challenges. Previously, auto-segmentation techniques have been clustered into 3 generations of algorithms, with multiatlas based and hybrid techniques (third generation) being considered the state-of-the-art. More recently, however, the field of medical image segmentation has seen accelerated growth driven by advances in computer vision, particularly through the application of deep learning algorithms, suggesting we have entered the fourth generation of auto-segmentation algorithm development. In this paper, the authors review traditional (nondeep learning) algorithms particularly relevant for applications in radiotherapy. Concepts from deep learning are introduced focusing on convolutional neural networks and fully-convolutional networks which are generally used for segmentation tasks. Furthermore, the authors provide a summary of deep learning auto-segmentation radiotherapy applications reported in the literature. Lastly, considerations for clinical deployment (commissioning and QA) of auto-segmentation software are provided.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助李小宁采纳,获得10
1秒前
1秒前
ekun完成签到,获得积分10
2秒前
blush完成签到 ,获得积分10
2秒前
希望天下0贩的0应助zzbbzz采纳,获得10
2秒前
3秒前
木辛完成签到,获得积分10
3秒前
jfz完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
bkagyin应助科研通管家采纳,获得10
7秒前
7秒前
完美世界应助科研通管家采纳,获得10
7秒前
Mr.Left应助科研通管家采纳,获得10
7秒前
JamesPei应助科研通管家采纳,获得10
7秒前
8秒前
大个应助科研通管家采纳,获得10
8秒前
搜集达人应助科研通管家采纳,获得30
8秒前
头哥应助科研通管家采纳,获得10
8秒前
NexusExplorer应助科研通管家采纳,获得10
8秒前
8秒前
Rollei应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
bkagyin应助科研通管家采纳,获得10
8秒前
8秒前
Rollei应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
核桃发布了新的文献求助10
8秒前
Mr.Left应助科研通管家采纳,获得10
9秒前
natmed应助科研通管家采纳,获得10
9秒前
JamesPei应助科研通管家采纳,获得10
9秒前
9秒前
上官若男应助科研通管家采纳,获得30
9秒前
9秒前
9秒前
9秒前
头哥应助科研通管家采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5735163
求助须知:如何正确求助?哪些是违规求助? 5358806
关于积分的说明 15328740
捐赠科研通 4879501
什么是DOI,文献DOI怎么找? 2621999
邀请新用户注册赠送积分活动 1571173
关于科研通互助平台的介绍 1527966