清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Advances in Auto-Segmentation

分割 深度学习 人工智能 卷积神经网络 计算机科学 图像分割 医学 过程(计算) 机器学习 计算机视觉 模式识别(心理学) 操作系统
作者
Carlos Cárdenas,Jinzhong Yang,Brian Anderson,Laurence E. Court,Kristy Brock
出处
期刊:Seminars in Radiation Oncology [Elsevier BV]
卷期号:29 (3): 185-197 被引量:343
标识
DOI:10.1016/j.semradonc.2019.02.001
摘要

Manual image segmentation is a time-consuming task routinely performed in radiotherapy to identify each patient's targets and anatomical structures. The efficacy and safety of the radiotherapy plan requires accurate segmentations as these regions of interest are generally used to optimize and assess the quality of the plan. However, reports have shown that this process can be subject to significant inter- and intraobserver variability. Furthermore, the quality of the radiotherapy treatment, and subsequent analyses (ie, radiomics, dosimetric), can be subject to the accuracy of these manual segmentations. Automatic segmentation (or auto-segmentation) of targets and normal tissues is, therefore, preferable as it would address these challenges. Previously, auto-segmentation techniques have been clustered into 3 generations of algorithms, with multiatlas based and hybrid techniques (third generation) being considered the state-of-the-art. More recently, however, the field of medical image segmentation has seen accelerated growth driven by advances in computer vision, particularly through the application of deep learning algorithms, suggesting we have entered the fourth generation of auto-segmentation algorithm development. In this paper, the authors review traditional (nondeep learning) algorithms particularly relevant for applications in radiotherapy. Concepts from deep learning are introduced focusing on convolutional neural networks and fully-convolutional networks which are generally used for segmentation tasks. Furthermore, the authors provide a summary of deep learning auto-segmentation radiotherapy applications reported in the literature. Lastly, considerations for clinical deployment (commissioning and QA) of auto-segmentation software are provided.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
violetlishu完成签到 ,获得积分10
8秒前
11秒前
干饭大王应助Echo_1995采纳,获得10
17秒前
纯真的梦竹完成签到,获得积分10
24秒前
Gary完成签到 ,获得积分10
29秒前
wang5945完成签到 ,获得积分10
32秒前
racill完成签到 ,获得积分10
35秒前
踏实的南琴完成签到 ,获得积分10
37秒前
fkwwdamocles完成签到,获得积分10
39秒前
tyro完成签到,获得积分10
41秒前
意境完成签到 ,获得积分10
41秒前
husky完成签到,获得积分10
41秒前
natsu401完成签到 ,获得积分10
48秒前
jibenkun完成签到,获得积分10
57秒前
1分钟前
1分钟前
1分钟前
1分钟前
小田完成签到 ,获得积分10
1分钟前
1分钟前
张羊羔完成签到,获得积分10
1分钟前
高婧发布了新的文献求助10
1分钟前
zhuosht完成签到 ,获得积分10
1分钟前
冷傲凝琴完成签到,获得积分10
1分钟前
1分钟前
孙刚完成签到 ,获得积分10
1分钟前
lql完成签到 ,获得积分10
2分钟前
IMP完成签到 ,获得积分10
2分钟前
千帆破浪完成签到 ,获得积分10
2分钟前
乐正怡完成签到 ,获得积分0
2分钟前
Echo_1995完成签到,获得积分10
2分钟前
缺粥完成签到 ,获得积分10
2分钟前
xinjiasuki完成签到 ,获得积分10
2分钟前
年轻千愁完成签到 ,获得积分10
2分钟前
小谭完成签到 ,获得积分10
2分钟前
huahua完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
wujuan1606完成签到 ,获得积分10
2分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968543
求助须知:如何正确求助?哪些是违规求助? 3513358
关于积分的说明 11167312
捐赠科研通 3248700
什么是DOI,文献DOI怎么找? 1794453
邀请新用户注册赠送积分活动 875030
科研通“疑难数据库(出版商)”最低求助积分说明 804664