Advances in Auto-Segmentation

分割 深度学习 人工智能 卷积神经网络 计算机科学 图像分割 医学 过程(计算) 机器学习 计算机视觉 模式识别(心理学) 操作系统
作者
Carlos Cárdenas,Jinzhong Yang,Brian Anderson,Laurence E. Court,Kristy Brock
出处
期刊:Seminars in Radiation Oncology [Elsevier]
卷期号:29 (3): 185-197 被引量:343
标识
DOI:10.1016/j.semradonc.2019.02.001
摘要

Manual image segmentation is a time-consuming task routinely performed in radiotherapy to identify each patient's targets and anatomical structures. The efficacy and safety of the radiotherapy plan requires accurate segmentations as these regions of interest are generally used to optimize and assess the quality of the plan. However, reports have shown that this process can be subject to significant inter- and intraobserver variability. Furthermore, the quality of the radiotherapy treatment, and subsequent analyses (ie, radiomics, dosimetric), can be subject to the accuracy of these manual segmentations. Automatic segmentation (or auto-segmentation) of targets and normal tissues is, therefore, preferable as it would address these challenges. Previously, auto-segmentation techniques have been clustered into 3 generations of algorithms, with multiatlas based and hybrid techniques (third generation) being considered the state-of-the-art. More recently, however, the field of medical image segmentation has seen accelerated growth driven by advances in computer vision, particularly through the application of deep learning algorithms, suggesting we have entered the fourth generation of auto-segmentation algorithm development. In this paper, the authors review traditional (nondeep learning) algorithms particularly relevant for applications in radiotherapy. Concepts from deep learning are introduced focusing on convolutional neural networks and fully-convolutional networks which are generally used for segmentation tasks. Furthermore, the authors provide a summary of deep learning auto-segmentation radiotherapy applications reported in the literature. Lastly, considerations for clinical deployment (commissioning and QA) of auto-segmentation software are provided.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
龙泉完成签到 ,获得积分10
刚刚
1秒前
我我我发布了新的文献求助10
1秒前
光脚丫完成签到,获得积分10
1秒前
1秒前
老小孩发布了新的文献求助10
2秒前
百里丹珍完成签到,获得积分10
2秒前
Txuan完成签到,获得积分10
2秒前
来自3602完成签到,获得积分10
3秒前
wwz完成签到,获得积分20
3秒前
温暖的苏发布了新的文献求助10
3秒前
123发布了新的文献求助10
4秒前
xiaoliang发布了新的文献求助10
4秒前
4秒前
4秒前
hode完成签到,获得积分20
4秒前
小锦发布了新的文献求助10
5秒前
5秒前
菠萝水手发布了新的文献求助10
5秒前
梧桐发布了新的文献求助10
6秒前
13发布了新的文献求助30
6秒前
张述杰完成签到,获得积分10
6秒前
张乐由完成签到,获得积分10
7秒前
7秒前
科研通AI6应助zeng采纳,获得10
7秒前
8秒前
hode发布了新的文献求助10
8秒前
8秒前
活泼的白开水完成签到,获得积分20
9秒前
9秒前
9秒前
9秒前
9秒前
小锦完成签到,获得积分10
10秒前
时尚寄真完成签到,获得积分10
10秒前
wangyali发布了新的文献求助10
10秒前
11秒前
爆米花应助友好芷蕊采纳,获得10
11秒前
12秒前
龙彦完成签到,获得积分10
13秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5340292
求助须知:如何正确求助?哪些是违规求助? 4476835
关于积分的说明 13932933
捐赠科研通 4372659
什么是DOI,文献DOI怎么找? 2402478
邀请新用户注册赠送积分活动 1395350
关于科研通互助平台的介绍 1367444