Advances in Auto-Segmentation

分割 深度学习 人工智能 卷积神经网络 计算机科学 图像分割 医学 过程(计算) 机器学习 计算机视觉 模式识别(心理学) 操作系统
作者
Carlos Cárdenas,Jinzhong Yang,Brian Anderson,Laurence E. Court,Kristy Brock
出处
期刊:Seminars in Radiation Oncology [Elsevier]
卷期号:29 (3): 185-197 被引量:271
标识
DOI:10.1016/j.semradonc.2019.02.001
摘要

Manual image segmentation is a time-consuming task routinely performed in radiotherapy to identify each patient's targets and anatomical structures. The efficacy and safety of the radiotherapy plan requires accurate segmentations as these regions of interest are generally used to optimize and assess the quality of the plan. However, reports have shown that this process can be subject to significant inter- and intraobserver variability. Furthermore, the quality of the radiotherapy treatment, and subsequent analyses (ie, radiomics, dosimetric), can be subject to the accuracy of these manual segmentations. Automatic segmentation (or auto-segmentation) of targets and normal tissues is, therefore, preferable as it would address these challenges. Previously, auto-segmentation techniques have been clustered into 3 generations of algorithms, with multiatlas based and hybrid techniques (third generation) being considered the state-of-the-art. More recently, however, the field of medical image segmentation has seen accelerated growth driven by advances in computer vision, particularly through the application of deep learning algorithms, suggesting we have entered the fourth generation of auto-segmentation algorithm development. In this paper, the authors review traditional (nondeep learning) algorithms particularly relevant for applications in radiotherapy. Concepts from deep learning are introduced focusing on convolutional neural networks and fully-convolutional networks which are generally used for segmentation tasks. Furthermore, the authors provide a summary of deep learning auto-segmentation radiotherapy applications reported in the literature. Lastly, considerations for clinical deployment (commissioning and QA) of auto-segmentation software are provided.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
公冶代丝完成签到,获得积分10
刚刚
pink完成签到,获得积分10
1秒前
余晓完成签到,获得积分10
1秒前
Ly完成签到,获得积分10
1秒前
1秒前
bibo完成签到 ,获得积分10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
双楠应助科研通管家采纳,获得10
1秒前
Zn应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
无花果应助科研通管家采纳,获得10
2秒前
大模型应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
Zn应助科研通管家采纳,获得10
2秒前
纪震宇发布了新的文献求助10
2秒前
大模型应助科研通管家采纳,获得10
2秒前
我是老大应助科研通管家采纳,获得10
2秒前
领导范儿应助科研通管家采纳,获得10
2秒前
2秒前
科目三应助科研通管家采纳,获得10
3秒前
小蘑菇应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
在水一方应助科研通管家采纳,获得30
3秒前
英姑应助科研通管家采纳,获得10
3秒前
顾矜应助科研通管家采纳,获得10
3秒前
一一发布了新的文献求助10
3秒前
桐桐应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
ding应助科研通管家采纳,获得10
3秒前
orixero应助科研通管家采纳,获得10
3秒前
Zn应助科研通管家采纳,获得10
3秒前
Zn应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
Laniakea发布了新的文献求助10
4秒前
4秒前
4秒前
杨然发布了新的文献求助10
4秒前
ssy完成签到,获得积分10
4秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
Time Matters: On Theory and Method 500
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3559210
求助须知:如何正确求助?哪些是违规求助? 3133831
关于积分的说明 9404212
捐赠科研通 2834006
什么是DOI,文献DOI怎么找? 1557743
邀请新用户注册赠送积分活动 727651
科研通“疑难数据库(出版商)”最低求助积分说明 716383