已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Advances in Auto-Segmentation

分割 深度学习 人工智能 卷积神经网络 计算机科学 图像分割 医学 过程(计算) 机器学习 计算机视觉 模式识别(心理学) 操作系统
作者
Carlos Cárdenas,Jinzhong Yang,Brian Anderson,Laurence E. Court,Kristy Brock
出处
期刊:Seminars in Radiation Oncology [Elsevier BV]
卷期号:29 (3): 185-197 被引量:343
标识
DOI:10.1016/j.semradonc.2019.02.001
摘要

Manual image segmentation is a time-consuming task routinely performed in radiotherapy to identify each patient's targets and anatomical structures. The efficacy and safety of the radiotherapy plan requires accurate segmentations as these regions of interest are generally used to optimize and assess the quality of the plan. However, reports have shown that this process can be subject to significant inter- and intraobserver variability. Furthermore, the quality of the radiotherapy treatment, and subsequent analyses (ie, radiomics, dosimetric), can be subject to the accuracy of these manual segmentations. Automatic segmentation (or auto-segmentation) of targets and normal tissues is, therefore, preferable as it would address these challenges. Previously, auto-segmentation techniques have been clustered into 3 generations of algorithms, with multiatlas based and hybrid techniques (third generation) being considered the state-of-the-art. More recently, however, the field of medical image segmentation has seen accelerated growth driven by advances in computer vision, particularly through the application of deep learning algorithms, suggesting we have entered the fourth generation of auto-segmentation algorithm development. In this paper, the authors review traditional (nondeep learning) algorithms particularly relevant for applications in radiotherapy. Concepts from deep learning are introduced focusing on convolutional neural networks and fully-convolutional networks which are generally used for segmentation tasks. Furthermore, the authors provide a summary of deep learning auto-segmentation radiotherapy applications reported in the literature. Lastly, considerations for clinical deployment (commissioning and QA) of auto-segmentation software are provided.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自觉向秋发布了新的文献求助10
刚刚
黄憨憨发布了新的文献求助50
1秒前
紫藤蛇完成签到,获得积分10
1秒前
希望天下0贩的0应助hyr采纳,获得10
1秒前
Xingkun_li完成签到,获得积分10
2秒前
2秒前
彧辰完成签到 ,获得积分10
4秒前
5秒前
lucky完成签到 ,获得积分10
7秒前
紫藤蛇发布了新的文献求助10
7秒前
汉堡包应助song采纳,获得10
8秒前
幽默雁凡发布了新的文献求助20
9秒前
思源应助自由飞翔采纳,获得10
10秒前
11秒前
小田发布了新的文献求助10
11秒前
11秒前
11秒前
绵绵完成签到,获得积分10
12秒前
Arueliano完成签到,获得积分10
14秒前
15秒前
16秒前
16秒前
hyr发布了新的文献求助10
16秒前
ok12发布了新的文献求助10
17秒前
19秒前
深情安青应助小方采纳,获得10
20秒前
camsLX发布了新的文献求助10
21秒前
21秒前
赵一丁发布了新的文献求助10
24秒前
27秒前
27秒前
27秒前
30秒前
文静的海发布了新的文献求助10
31秒前
Glufo发布了新的文献求助10
31秒前
31秒前
Jemma发布了新的文献求助10
32秒前
34秒前
英俊的铭应助科研通管家采纳,获得10
34秒前
Akim应助科研通管家采纳,获得10
34秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976455
求助须知:如何正确求助?哪些是违规求助? 3520548
关于积分的说明 11203728
捐赠科研通 3257156
什么是DOI,文献DOI怎么找? 1798618
邀请新用户注册赠送积分活动 877819
科研通“疑难数据库(出版商)”最低求助积分说明 806523