高光谱成像
多光谱图像
计算机科学
人工智能
降维
RGB颜色模型
皮肤癌
模式识别(心理学)
特征(语言学)
计算机视觉
癌症
医学
语言学
内科学
哲学
作者
Thomas Haugland Johansen,Kajsa Møllersen,Samuel Ortega,Himar Fabelo,Aday García,Fred Godtliebsen
摘要
Abstract Skin cancer is one of the most common types of cancer. Skin cancers are classified as nonmelanoma and melanoma, with the first type being the most frequent and the second type being the most deadly. The key to effective treatment of skin cancer is early detection. With the recent increase of computational power, the number of algorithms to detect and classify skin lesions has increased. The overall verdict on systems based on clinical and dermoscopic images captured with conventional RGB (red, green, and blue) cameras is that they do not outperform dermatologists. Computer‐based systems based on conventional RGB images seem to have reached an upper limit in their performance, while emerging technologies such as hyperspectral and multispectral imaging might possibly improve the results. These types of images can explore spectral regions beyond the human eye capabilities. Feature selection and dimensionality reduction are crucial parts of extracting salient information from this type of data. It is necessary to extend current classification methodologies to use all of the spatiospectral information, and deep learning models should be explored since they are capable of learning robust feature detectors from data. There is a lack of large, high‐quality datasets of hyperspectral skin lesion images, and there is a need for tools that can aid with monitoring the evolution of skin lesions over time. To understand the rich information contained in hyperspectral images, further research using data science and statistical methodologies, such as functional data analysis, scale‐space theory, machine learning, and so on, are essential. This article is categorized under: Applications of Computational Statistics > Health and Medical Data/Informatics
科研通智能强力驱动
Strongly Powered by AbleSci AI