Adaptive Confidence Boundary Modeling of Wind Turbine Power Curve Using SCADA Data and Its Application

风力发电 涡轮机 计算机科学 概率逻辑 数据建模 离群值 SCADA系统 缺少数据 插值(计算机图形学) 数据挖掘 工程类 人工智能 机器学习 数据库 机械工程 运动(物理) 电气工程
作者
Yang Hu,Yilin Qiao,Jizhen Liu,Honglu Zhu
出处
期刊:IEEE Transactions on Sustainable Energy [Institute of Electrical and Electronics Engineers]
卷期号:10 (3): 1330-1341 被引量:34
标识
DOI:10.1109/tste.2018.2866543
摘要

With the rapid development of wind power industry recently, huge data source are accumulated by the widespread supervisory control and data acquisition systems. The data-driven wind turbine power curve plays an important role in many fields, whereas it is sensitive to data quality. The invalid and unnatural data need to be reasonably eliminated. Considering the complex influences to data records, probabilistic description is effective to represent the data uncertainty. Initially, raw data are cleaned in the three-dimensional copula space. On this basis, in divisional operation regions of the variable-pitch wind turbine, the weighted mixture of Archimedes copula functions are estimated by expectation maximization to establish the joint probabilistic distributions. Then, a confidence boundary modeling procedure of power curve is presented to identify abnormal data, while an evaluation system is constructed for adaptive modeling with guaranteed performance. After outliers elimination by the boundary, a bi-directional Markov chain interpolation method is proposed to recover consecutively missing data with optimized weights. Finally, the operation data from different wind turbines are preprocessed for validation. The simulation results show that more accurate power curve can be obtained to calculate the theoretical power, which suggests effectiveness of the proposed methods and their great application potential.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
小二郎应助michen采纳,获得10
3秒前
4秒前
4秒前
雾里看花水中望月完成签到,获得积分20
4秒前
4秒前
wzy发布了新的文献求助10
4秒前
yjf,123发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
6秒前
执着幻桃完成签到,获得积分10
6秒前
阆州发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
7秒前
重要寄松发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
深情安青应助顺利寻真采纳,获得20
8秒前
8秒前
共享精神应助mm采纳,获得10
8秒前
阡陌完成签到,获得积分10
8秒前
Hhh发布了新的文献求助10
9秒前
小苏同学完成签到,获得积分10
10秒前
lawang发布了新的文献求助10
11秒前
lawang发布了新的文献求助10
11秒前
lawang发布了新的文献求助10
11秒前
lawang发布了新的文献求助10
11秒前
lawang发布了新的文献求助10
11秒前
lawang发布了新的文献求助10
11秒前
lawang发布了新的文献求助10
11秒前
lawang发布了新的文献求助10
11秒前
lawang发布了新的文献求助10
11秒前
11秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
Advanced Memory Technology: Functional Materials and Devices 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675174
求助须知:如何正确求助?哪些是违规求助? 4943579
关于积分的说明 15151713
捐赠科研通 4834349
什么是DOI,文献DOI怎么找? 2589438
邀请新用户注册赠送积分活动 1543035
关于科研通互助平台的介绍 1501031