Adaptive Confidence Boundary Modeling of Wind Turbine Power Curve Using SCADA Data and Its Application

风力发电 涡轮机 计算机科学 概率逻辑 数据建模 离群值 SCADA系统 缺少数据 插值(计算机图形学) 数据挖掘 工程类 人工智能 机器学习 数据库 机械工程 运动(物理) 电气工程
作者
Yang Hu,Yilin Qiao,Jizhen Liu,Honglu Zhu
出处
期刊:IEEE Transactions on Sustainable Energy [Institute of Electrical and Electronics Engineers]
卷期号:10 (3): 1330-1341 被引量:34
标识
DOI:10.1109/tste.2018.2866543
摘要

With the rapid development of wind power industry recently, huge data source are accumulated by the widespread supervisory control and data acquisition systems. The data-driven wind turbine power curve plays an important role in many fields, whereas it is sensitive to data quality. The invalid and unnatural data need to be reasonably eliminated. Considering the complex influences to data records, probabilistic description is effective to represent the data uncertainty. Initially, raw data are cleaned in the three-dimensional copula space. On this basis, in divisional operation regions of the variable-pitch wind turbine, the weighted mixture of Archimedes copula functions are estimated by expectation maximization to establish the joint probabilistic distributions. Then, a confidence boundary modeling procedure of power curve is presented to identify abnormal data, while an evaluation system is constructed for adaptive modeling with guaranteed performance. After outliers elimination by the boundary, a bi-directional Markov chain interpolation method is proposed to recover consecutively missing data with optimized weights. Finally, the operation data from different wind turbines are preprocessed for validation. The simulation results show that more accurate power curve can be obtained to calculate the theoretical power, which suggests effectiveness of the proposed methods and their great application potential.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
exy发布了新的文献求助10
1秒前
suki发布了新的文献求助10
1秒前
薛定谔的加菲猫完成签到,获得积分10
1秒前
LCC完成签到,获得积分10
2秒前
Simone完成签到 ,获得积分10
3秒前
3秒前
烂漫的孤晴完成签到,获得积分10
3秒前
夏miao完成签到,获得积分10
3秒前
3秒前
3秒前
善学以致用应助小羊采纳,获得10
3秒前
3秒前
Annieqqiu完成签到 ,获得积分10
4秒前
积极丹南发布了新的文献求助10
4秒前
5秒前
新新完成签到,获得积分10
5秒前
emberflow完成签到,获得积分10
6秒前
战神幽默完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
7秒前
烟花应助小丸子呀采纳,获得10
7秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
8秒前
3333r发布了新的文献求助10
8秒前
wind完成签到,获得积分10
8秒前
8秒前
求助文献发布了新的文献求助10
8秒前
9秒前
9秒前
9秒前
9秒前
min应助祁岳颐采纳,获得10
10秒前
10秒前
温暖冬日完成签到,获得积分10
10秒前
零度蓝莓发布了新的文献求助10
10秒前
10秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625139
求助须知:如何正确求助?哪些是违规求助? 4710965
关于积分的说明 14953364
捐赠科研通 4779073
什么是DOI,文献DOI怎么找? 2553598
邀请新用户注册赠送积分活动 1515504
关于科研通互助平台的介绍 1475786