Adaptive Confidence Boundary Modeling of Wind Turbine Power Curve Using SCADA Data and Its Application

风力发电 涡轮机 计算机科学 概率逻辑 数据建模 离群值 SCADA系统 缺少数据 插值(计算机图形学) 数据挖掘 工程类 人工智能 机器学习 数据库 机械工程 运动(物理) 电气工程
作者
Yang Hu,Yilin Qiao,Jizhen Liu,Honglu Zhu
出处
期刊:IEEE Transactions on Sustainable Energy [Institute of Electrical and Electronics Engineers]
卷期号:10 (3): 1330-1341 被引量:34
标识
DOI:10.1109/tste.2018.2866543
摘要

With the rapid development of wind power industry recently, huge data source are accumulated by the widespread supervisory control and data acquisition systems. The data-driven wind turbine power curve plays an important role in many fields, whereas it is sensitive to data quality. The invalid and unnatural data need to be reasonably eliminated. Considering the complex influences to data records, probabilistic description is effective to represent the data uncertainty. Initially, raw data are cleaned in the three-dimensional copula space. On this basis, in divisional operation regions of the variable-pitch wind turbine, the weighted mixture of Archimedes copula functions are estimated by expectation maximization to establish the joint probabilistic distributions. Then, a confidence boundary modeling procedure of power curve is presented to identify abnormal data, while an evaluation system is constructed for adaptive modeling with guaranteed performance. After outliers elimination by the boundary, a bi-directional Markov chain interpolation method is proposed to recover consecutively missing data with optimized weights. Finally, the operation data from different wind turbines are preprocessed for validation. The simulation results show that more accurate power curve can be obtained to calculate the theoretical power, which suggests effectiveness of the proposed methods and their great application potential.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
解愚志给潘潘的求助进行了留言
刚刚
科研小白完成签到,获得积分10
刚刚
憨憨医生发布了新的文献求助10
刚刚
自由如冰完成签到,获得积分10
1秒前
2秒前
hfhkjh发布了新的文献求助10
2秒前
2秒前
2秒前
ZZY发布了新的文献求助10
2秒前
汉堡包应助111采纳,获得10
3秒前
在水一方应助errui采纳,获得10
4秒前
4秒前
达达发布了新的文献求助10
4秒前
小时发布了新的文献求助10
4秒前
4秒前
ding应助憨憨医生采纳,获得10
5秒前
小二郎应助Arrebol采纳,获得10
6秒前
7秒前
7秒前
可靠寒云完成签到,获得积分10
7秒前
yuanjun发布了新的文献求助10
7秒前
难过的班发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
10秒前
zenith968完成签到,获得积分10
10秒前
11秒前
123发布了新的文献求助10
12秒前
小二郎应助qq大魔王采纳,获得10
13秒前
纯情的傲儿完成签到,获得积分10
13秒前
edjtzlz完成签到,获得积分10
13秒前
Sara完成签到,获得积分20
13秒前
猪猪侠007发布了新的文献求助10
14秒前
errui发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
15秒前
15秒前
hjhj完成签到,获得积分10
15秒前
鸢尾蓝完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5713133
求助须知:如何正确求助?哪些是违规求助? 5213704
关于积分的说明 15269646
捐赠科研通 4864955
什么是DOI,文献DOI怎么找? 2611759
邀请新用户注册赠送积分活动 1562014
关于科研通互助平台的介绍 1519213