Adaptive Confidence Boundary Modeling of Wind Turbine Power Curve Using SCADA Data and Its Application

风力发电 涡轮机 计算机科学 概率逻辑 数据建模 离群值 SCADA系统 缺少数据 插值(计算机图形学) 数据挖掘 工程类 人工智能 机器学习 数据库 机械工程 运动(物理) 电气工程
作者
Yang Hu,Yilin Qiao,Jizhen Liu,Honglu Zhu
出处
期刊:IEEE Transactions on Sustainable Energy [Institute of Electrical and Electronics Engineers]
卷期号:10 (3): 1330-1341 被引量:34
标识
DOI:10.1109/tste.2018.2866543
摘要

With the rapid development of wind power industry recently, huge data source are accumulated by the widespread supervisory control and data acquisition systems. The data-driven wind turbine power curve plays an important role in many fields, whereas it is sensitive to data quality. The invalid and unnatural data need to be reasonably eliminated. Considering the complex influences to data records, probabilistic description is effective to represent the data uncertainty. Initially, raw data are cleaned in the three-dimensional copula space. On this basis, in divisional operation regions of the variable-pitch wind turbine, the weighted mixture of Archimedes copula functions are estimated by expectation maximization to establish the joint probabilistic distributions. Then, a confidence boundary modeling procedure of power curve is presented to identify abnormal data, while an evaluation system is constructed for adaptive modeling with guaranteed performance. After outliers elimination by the boundary, a bi-directional Markov chain interpolation method is proposed to recover consecutively missing data with optimized weights. Finally, the operation data from different wind turbines are preprocessed for validation. The simulation results show that more accurate power curve can be obtained to calculate the theoretical power, which suggests effectiveness of the proposed methods and their great application potential.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助hui采纳,获得10
1秒前
2秒前
2秒前
乐观香寒完成签到 ,获得积分10
3秒前
小马甲应助发八篇sci采纳,获得10
3秒前
3秒前
殴打阿达完成签到,获得积分10
3秒前
Akim应助jessica采纳,获得10
3秒前
qiuqi发布了新的文献求助10
5秒前
帅气东蒽完成签到,获得积分10
6秒前
6秒前
闪闪的屁股完成签到,获得积分10
8秒前
Catherine完成签到,获得积分10
10秒前
今后应助毅诚菌采纳,获得10
10秒前
10秒前
10秒前
无限的雁芙完成签到,获得积分20
10秒前
11秒前
三好学生完成签到,获得积分10
11秒前
仇峰完成签到,获得积分10
11秒前
12秒前
jiang应助上山的吗喽采纳,获得30
13秒前
西柚发布了新的文献求助30
14秒前
14秒前
dingz完成签到,获得积分0
14秒前
buno应助qiuqi采纳,获得10
15秒前
16秒前
Karouline完成签到,获得积分10
17秒前
jessica发布了新的文献求助10
19秒前
Bowingyang应助科研通管家采纳,获得10
20秒前
20秒前
zhonglv7应助科研通管家采纳,获得10
20秒前
深情安青应助科研通管家采纳,获得10
20秒前
Bowingyang应助科研通管家采纳,获得10
20秒前
共享精神应助科研通管家采纳,获得10
20秒前
BowieHuang应助科研通管家采纳,获得10
21秒前
科研通AI6应助科研通管家采纳,获得10
21秒前
科研通AI6应助科研通管家采纳,获得10
21秒前
21秒前
星辰大海应助科研通管家采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604157
求助须知:如何正确求助?哪些是违规求助? 4688985
关于积分的说明 14857229
捐赠科研通 4696839
什么是DOI,文献DOI怎么找? 2541204
邀请新用户注册赠送积分活动 1507328
关于科研通互助平台的介绍 1471851