A Gene Rank Based Approach for Single Cell Similarity Assessment and Clustering

聚类分析 数据挖掘 人口 计算机科学 相似性(几何) 人工智能 秩(图论) 机器学习 数学 组合数学 图像(数学) 社会学 人口学
作者
Yunpei Xu,Hong‐Dong Li,Yi Pan,Feng Luo,Fang‐Xiang Wu,Jianxin Wang
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:18 (2): 431-442 被引量:13
标识
DOI:10.1109/tcbb.2019.2931582
摘要

Single-cell RNA sequencing (scRNA-seq) technology provides quantitative gene expression profiles at single-cell resolution. As a result, researchers have established new ways to explore cell population heterogeneity and genetic variability of cells. One of the current research directions for scRNA-seq data is to identify different cell types accurately through unsupervised clustering methods. However, scRNA-seq data analysis is challenging because of their high noise level, high dimensionality and sparsity. Moreover, the impact of multiple latent factors on gene expression heterogeneity and on the ability to accurately identify cell types remains unclear. How to overcome these challenges to reveal the biological difference between cell types has become the key to analyze scRNA-seq data. For these reasons, the unsupervised learning for cell population discovery based on scRNA-seq data analysis has become an important research area. A cell similarity assessment method plays a significant role in cell clustering. Here, we present BioRank, a new cell similarity assessment method based on annotated gene sets and gene ranks. To evaluate the performances, we cluster cells by two classical clustering algorithms based on the similarity between cells obtained by BioRank. In addition, BioRank can be used by any clustering algorithm that requires a similarity matrix. Applying BioRank to 12 public scRNA-seq datasets, we show that it is better than or at least as well as several popular similarity assessment methods for single cell clustering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
头大的土狗完成签到,获得积分20
刚刚
高高香露完成签到,获得积分10
刚刚
CWNU_HAN应助xuxiaoxu采纳,获得30
刚刚
我不爱池鱼应助oceanao采纳,获得10
刚刚
我不爱池鱼应助oceanao采纳,获得10
刚刚
略略略爱完成签到,获得积分10
1秒前
江南松发布了新的文献求助30
1秒前
2秒前
在望完成签到,获得积分10
2秒前
2秒前
2秒前
小蘑菇应助初(*^▽^*)心采纳,获得10
2秒前
帅气的科研男孩完成签到,获得积分20
3秒前
顺利山蝶发布了新的文献求助10
3秒前
3秒前
www发布了新的文献求助10
4秒前
自由青柏完成签到,获得积分10
4秒前
罗元正完成签到 ,获得积分10
4秒前
HH完成签到,获得积分10
5秒前
shuimu9527发布了新的文献求助10
5秒前
jue完成签到,获得积分10
6秒前
盐先生完成签到 ,获得积分10
6秒前
Jupiter 1234完成签到,获得积分10
6秒前
阳光的定帮完成签到,获得积分10
7秒前
7秒前
8秒前
脑洞疼应助HH采纳,获得10
9秒前
大黑狗完成签到,获得积分10
9秒前
薛布慧完成签到 ,获得积分10
9秒前
10秒前
LaiC完成签到,获得积分10
11秒前
13秒前
song发布了新的文献求助30
13秒前
秀丽的皮皮虾完成签到 ,获得积分10
14秒前
an发布了新的文献求助10
14秒前
axnm完成签到,获得积分10
14秒前
所所应助噼里啪啦采纳,获得20
15秒前
15秒前
ccciii发布了新的文献求助10
15秒前
moyang发布了新的文献求助10
16秒前
高分求助中
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
Manual of Sewer Condition Classification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3122261
求助须知:如何正确求助?哪些是违规求助? 2772593
关于积分的说明 7714267
捐赠科研通 2428110
什么是DOI,文献DOI怎么找? 1289654
科研通“疑难数据库(出版商)”最低求助积分说明 621484
版权声明 600183