A Gene Rank Based Approach for Single Cell Similarity Assessment and Clustering

聚类分析 数据挖掘 人口 计算机科学 相似性(几何) 人工智能 秩(图论) 机器学习 数学 组合数学 图像(数学) 社会学 人口学
作者
Yunpei Xu,Hong‐Dong Li,Yi Pan,Feng Luo,Fang‐Xiang Wu,Jianxin Wang
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:18 (2): 431-442 被引量:13
标识
DOI:10.1109/tcbb.2019.2931582
摘要

Single-cell RNA sequencing (scRNA-seq) technology provides quantitative gene expression profiles at single-cell resolution. As a result, researchers have established new ways to explore cell population heterogeneity and genetic variability of cells. One of the current research directions for scRNA-seq data is to identify different cell types accurately through unsupervised clustering methods. However, scRNA-seq data analysis is challenging because of their high noise level, high dimensionality and sparsity. Moreover, the impact of multiple latent factors on gene expression heterogeneity and on the ability to accurately identify cell types remains unclear. How to overcome these challenges to reveal the biological difference between cell types has become the key to analyze scRNA-seq data. For these reasons, the unsupervised learning for cell population discovery based on scRNA-seq data analysis has become an important research area. A cell similarity assessment method plays a significant role in cell clustering. Here, we present BioRank, a new cell similarity assessment method based on annotated gene sets and gene ranks. To evaluate the performances, we cluster cells by two classical clustering algorithms based on the similarity between cells obtained by BioRank. In addition, BioRank can be used by any clustering algorithm that requires a similarity matrix. Applying BioRank to 12 public scRNA-seq datasets, we show that it is better than or at least as well as several popular similarity assessment methods for single cell clustering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zddhhh完成签到,获得积分20
1秒前
yangzai发布了新的文献求助10
1秒前
Qingcyx发布了新的文献求助10
2秒前
3秒前
fairy完成签到 ,获得积分10
4秒前
zzzg发布了新的文献求助10
4秒前
Jasper应助老实的寒安采纳,获得10
4秒前
6秒前
napnap完成签到 ,获得积分10
6秒前
7秒前
7秒前
8秒前
隐形曼青应助Clarence采纳,获得10
9秒前
归尘发布了新的文献求助30
10秒前
帕芙芙发布了新的文献求助10
10秒前
napnap关注了科研通微信公众号
10秒前
Qingcyx完成签到,获得积分10
12秒前
大模型应助典雅的迎波采纳,获得10
12秒前
Zirong发布了新的文献求助10
13秒前
li发布了新的文献求助10
13秒前
优雅狗发布了新的文献求助10
13秒前
Hmzek完成签到,获得积分10
13秒前
NING完成签到 ,获得积分10
14秒前
传奇3应助zddhhh采纳,获得10
15秒前
16秒前
CodeCraft应助tangz采纳,获得10
19秒前
Clarence发布了新的文献求助10
22秒前
优雅狗完成签到,获得积分10
23秒前
老班长发布了新的文献求助10
23秒前
老实的寒安完成签到,获得积分10
27秒前
认真的代柔完成签到,获得积分10
28秒前
海晨完成签到,获得积分10
28秒前
28秒前
万能图书馆应助温婉采纳,获得10
30秒前
口十木又寸完成签到,获得积分20
30秒前
索浩鑫关注了科研通微信公众号
31秒前
clock完成签到 ,获得积分10
31秒前
31秒前
Elaine发布了新的文献求助10
31秒前
33秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961083
求助须知:如何正确求助?哪些是违规求助? 3507362
关于积分的说明 11135622
捐赠科研通 3239835
什么是DOI,文献DOI怎么找? 1790434
邀请新用户注册赠送积分活动 872400
科研通“疑难数据库(出版商)”最低求助积分说明 803150