材料科学
电催化剂
析氧
化学工程
氧气
纳米技术
无机化学
电化学
电极
化学
有机化学
物理化学
工程类
作者
Peng Yu,Lei Wang,Fanfei Sun,Ying Xie,Xu Liu,Jingyuan Ma,Xiuwen Wang,Chungui Tian,Jinghong Li,Honggang Fu
标识
DOI:10.1002/adma.201901666
摘要
Developing non-precious-metal bifunctional oxygen reduction and evolution reaction (ORR/OER) catalysts is a major task for promoting the reaction efficiency of Zn-air batteries. Co-based catalysts have been regarded as promising ORR and OER catalysts owing to the multivalence characteristic of cobalt element. Herein, the synthesis of Co nanoislands rooted on Co-N-C nanosheets supported by carbon felts (Co/Co-N-C) is reported. Co nanosheets rooted on the carbon felt derived from electrodeposition are applied as the self-template and cobalt source. The synergistic effect of metal Co islands with OER activity and Co-N-C nanosheets with superior ORR performance leads to good bifuctional catalytic performances. Wavelet transform extended X-ray absorption fine spectroscopy and X-ray photoelectron spectroscopy certify the formation of Co (mainly Co0 ) and the Co-N-C (mainly Co2+ and Co3+ ) structure. As the air-cathode, the assembled aqueous Zn-air battery exhibits a small charge-discharge voltage gap (0.82 V@10 mA cm-2 ) and high power density of 132 mW cm-2 , outperforming the commercial Pt/C catalyst. Additionally, the cable flexible rechargeable Zn-air battery exhibits excellent bendable and durability. Density functional theory calculation is combined with operando X-ray absorption spectroscopy to further elucidate the active sites of oxygen reactions at the Co/Co-N-C cathode in Zn-air battery.
科研通智能强力驱动
Strongly Powered by AbleSci AI