Deep learning for the classification of human sperm

人工智能 深度学习 计算机科学 精子 机器学习 生物 植物
作者
Jason Riordon,Christopher McCallum,David Sinton
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:111: 103342-103342 被引量:133
标识
DOI:10.1016/j.compbiomed.2019.103342
摘要

Abstract Background Infertility is a global health concern, and couples are increasingly seeking medical assistance to achieve reproduction. Semen analysis is a primary assessment performed by a clinician, in which the morphology of the sperm population is evaluated. Machine learning algorithms that automate, standardize, and expedite sperm classification are the subject of ongoing research. Method We demonstrate a deep learning method to classify sperm into one of several World Health Organization (WHO) shape-based categories. Our method uses VGG16, a deep convolutional neural network (CNN) initially trained on ImageNet, a collection of human-annotated everyday images, which we retrain for sperm classification using two freely-available sperm head datasets (HuSHeM and SCIAN). Results Our deep learning approach classifies sperm at high accuracy and performs well in head-to-head comparisons with earlier approaches using identical datasets. We demonstrate improvement in true positive rate over a classifier approach based on a cascade ensemble of support vector machines (CE-SVM) and show similar true positive rates as compared to an adaptive patch-based dictionary learning (APDL) method. Retraining an off-the-shelf VGG16 network avoids excessive neural network computation or having to learn and use the massive dictionaries required for sparse representation, both of which can be computationally expensive. Conclusions We show that our deep learning approach to sperm head classification represents a viable method to automate, standardize, and accelerate semen analysis. Our approach highlights the potential of artificial intelligence technologies to eventually exceed human experts in terms of accuracy, reliability, and throughput.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
LZCCC完成签到,获得积分10
1秒前
fvsuar完成签到,获得积分10
1秒前
大聪明发布了新的文献求助10
1秒前
Eins完成签到 ,获得积分10
1秒前
丢丢在吗发布了新的文献求助10
1秒前
佳佳发布了新的文献求助10
1秒前
su发布了新的文献求助10
1秒前
见雨鱼完成签到 ,获得积分10
1秒前
1秒前
狗熊发布了新的文献求助10
2秒前
2秒前
打打应助追寻的问玉采纳,获得10
2秒前
a'mao'men完成签到,获得积分10
2秒前
嘟嘟发布了新的文献求助10
2秒前
思源应助PaoPao采纳,获得10
2秒前
王旭发布了新的文献求助10
3秒前
小迷糊完成签到 ,获得积分10
3秒前
3秒前
Simone发布了新的文献求助10
3秒前
昌怜烟完成签到,获得积分10
4秒前
4秒前
呢n完成签到 ,获得积分10
4秒前
5秒前
miawei完成签到,获得积分10
5秒前
生活散文发布了新的文献求助10
5秒前
VV发布了新的文献求助10
5秒前
Hoiden完成签到,获得积分10
5秒前
you完成签到,获得积分10
6秒前
liuyong完成签到,获得积分10
6秒前
海之恋心完成签到 ,获得积分10
6秒前
东邪西毒加任我行完成签到,获得积分10
6秒前
丢丢在吗完成签到,获得积分10
7秒前
7秒前
内向的隶完成签到,获得积分20
7秒前
zuozuo完成签到,获得积分10
7秒前
8秒前
啊我是那个谁完成签到,获得积分10
8秒前
标致绿茶完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573758
求助须知:如何正确求助?哪些是违规求助? 4660031
关于积分的说明 14727408
捐赠科研通 4599888
什么是DOI,文献DOI怎么找? 2524520
邀请新用户注册赠送积分活动 1494877
关于科研通互助平台的介绍 1464977