Deep learning for the classification of human sperm

人工智能 深度学习 计算机科学 精子 机器学习 生物 植物
作者
Jason Riordon,Christopher McCallum,David Sinton
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:111: 103342-103342 被引量:107
标识
DOI:10.1016/j.compbiomed.2019.103342
摘要

Abstract Background Infertility is a global health concern, and couples are increasingly seeking medical assistance to achieve reproduction. Semen analysis is a primary assessment performed by a clinician, in which the morphology of the sperm population is evaluated. Machine learning algorithms that automate, standardize, and expedite sperm classification are the subject of ongoing research. Method We demonstrate a deep learning method to classify sperm into one of several World Health Organization (WHO) shape-based categories. Our method uses VGG16, a deep convolutional neural network (CNN) initially trained on ImageNet, a collection of human-annotated everyday images, which we retrain for sperm classification using two freely-available sperm head datasets (HuSHeM and SCIAN). Results Our deep learning approach classifies sperm at high accuracy and performs well in head-to-head comparisons with earlier approaches using identical datasets. We demonstrate improvement in true positive rate over a classifier approach based on a cascade ensemble of support vector machines (CE-SVM) and show similar true positive rates as compared to an adaptive patch-based dictionary learning (APDL) method. Retraining an off-the-shelf VGG16 network avoids excessive neural network computation or having to learn and use the massive dictionaries required for sparse representation, both of which can be computationally expensive. Conclusions We show that our deep learning approach to sperm head classification represents a viable method to automate, standardize, and accelerate semen analysis. Our approach highlights the potential of artificial intelligence technologies to eventually exceed human experts in terms of accuracy, reliability, and throughput.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沙里发布了新的文献求助10
1秒前
1秒前
坦率晓霜完成签到,获得积分10
2秒前
lsn关闭了lsn文献求助
2秒前
李健的小迷弟应助杭谷波采纳,获得30
2秒前
2秒前
3秒前
Akim应助顺利秋灵采纳,获得10
4秒前
完美世界应助子云采纳,获得10
5秒前
zooro发布了新的文献求助10
6秒前
着急的雪冥完成签到,获得积分10
7秒前
胡维红发布了新的文献求助10
7秒前
希望天下0贩的0应助lf-leo采纳,获得10
8秒前
沙里完成签到,获得积分10
10秒前
呵呵发布了新的文献求助10
10秒前
无花果应助迷人听双采纳,获得10
11秒前
量子星尘发布了新的文献求助10
11秒前
吃的饭广泛应助布洛芬采纳,获得10
13秒前
13秒前
端庄冬日完成签到,获得积分10
14秒前
慕青应助zooro采纳,获得10
15秒前
15秒前
简简单单完成签到,获得积分10
17秒前
小蘑菇应助胡维红采纳,获得10
18秒前
共享精神应助可耐的青雪采纳,获得10
18秒前
子云发布了新的文献求助10
18秒前
19秒前
22秒前
YC驳回了小二郎应助
25秒前
25秒前
无眠月关注了科研通微信公众号
25秒前
鳗鱼紫萱完成签到,获得积分10
25秒前
L_MD完成签到,获得积分10
25秒前
27秒前
27秒前
自然千山发布了新的文献求助10
28秒前
28秒前
29秒前
31秒前
田様应助杭谷波采纳,获得10
31秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959371
求助须知:如何正确求助?哪些是违规求助? 3505602
关于积分的说明 11124845
捐赠科研通 3237384
什么是DOI,文献DOI怎么找? 1789116
邀请新用户注册赠送积分活动 871577
科研通“疑难数据库(出版商)”最低求助积分说明 802844