Deep learning for the classification of human sperm

人工智能 深度学习 计算机科学 精子 机器学习 生物 植物
作者
Jason Riordon,Christopher McCallum,David Sinton
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:111: 103342-103342 被引量:133
标识
DOI:10.1016/j.compbiomed.2019.103342
摘要

Abstract Background Infertility is a global health concern, and couples are increasingly seeking medical assistance to achieve reproduction. Semen analysis is a primary assessment performed by a clinician, in which the morphology of the sperm population is evaluated. Machine learning algorithms that automate, standardize, and expedite sperm classification are the subject of ongoing research. Method We demonstrate a deep learning method to classify sperm into one of several World Health Organization (WHO) shape-based categories. Our method uses VGG16, a deep convolutional neural network (CNN) initially trained on ImageNet, a collection of human-annotated everyday images, which we retrain for sperm classification using two freely-available sperm head datasets (HuSHeM and SCIAN). Results Our deep learning approach classifies sperm at high accuracy and performs well in head-to-head comparisons with earlier approaches using identical datasets. We demonstrate improvement in true positive rate over a classifier approach based on a cascade ensemble of support vector machines (CE-SVM) and show similar true positive rates as compared to an adaptive patch-based dictionary learning (APDL) method. Retraining an off-the-shelf VGG16 network avoids excessive neural network computation or having to learn and use the massive dictionaries required for sparse representation, both of which can be computationally expensive. Conclusions We show that our deep learning approach to sperm head classification represents a viable method to automate, standardize, and accelerate semen analysis. Our approach highlights the potential of artificial intelligence technologies to eventually exceed human experts in terms of accuracy, reliability, and throughput.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yznfly应助孙朱珠采纳,获得50
刚刚
ljlj发布了新的文献求助10
刚刚
刚刚
白开水完成签到 ,获得积分10
刚刚
轻柔的心碎完成签到,获得积分10
刚刚
研友_VZG7GZ应助lixiaofan采纳,获得10
刚刚
张一二二二完成签到,获得积分10
刚刚
无忧完成签到,获得积分10
1秒前
1秒前
求助人员发布了新的文献求助10
1秒前
ewdf发布了新的文献求助10
1秒前
浮游应助pgfx1993采纳,获得10
1秒前
Tammy发布了新的文献求助10
1秒前
所所应助等风等你采纳,获得10
1秒前
绿狗玩偶发布了新的文献求助10
1秒前
事已至此已成人喵完成签到,获得积分10
2秒前
jll关闭了jll文献求助
2秒前
小二郎应助ybwei2008_163采纳,获得10
3秒前
李爱国应助木灵采纳,获得10
3秒前
无忧发布了新的文献求助10
4秒前
王佳友完成签到 ,获得积分10
5秒前
奋斗发布了新的文献求助10
5秒前
是阿丹啊发布了新的文献求助10
5秒前
小小檀健次完成签到,获得积分10
6秒前
ding应助石豪有采纳,获得10
6秒前
Zzzz1发布了新的文献求助10
6秒前
July发布了新的文献求助10
6秒前
半根烟完成签到,获得积分10
7秒前
烟花应助张姣姣采纳,获得10
7秒前
清秀迎彤完成签到,获得积分10
7秒前
7秒前
Jasper应助幸福的雪枫采纳,获得10
7秒前
钙离子发布了新的文献求助10
8秒前
闪闪的澜完成签到,获得积分10
8秒前
Orange应助内向士萧采纳,获得10
8秒前
8秒前
桐桐应助一一采纳,获得10
9秒前
9秒前
homie完成签到,获得积分20
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5512592
求助须知:如何正确求助?哪些是违规求助? 4607038
关于积分的说明 14502582
捐赠科研通 4542444
什么是DOI,文献DOI怎么找? 2489039
邀请新用户注册赠送积分活动 1471072
关于科研通互助平台的介绍 1443218