Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model

深度学习 人工智能 计算机科学 卡斯普 蛋白质结构预测 从头算 同源建模 人工神经网络 模式识别(心理学) 蛋白质结构 生物系统 化学 生物 生物化学 有机化学
作者
Sheng Wang,Siqi Sun,Zhen Li,Renyu Zhang,Jinbo Xu
出处
期刊:PLOS Computational Biology [Public Library of Science]
卷期号:13 (1): e1005324-e1005324 被引量:882
标识
DOI:10.1371/journal.pcbi.1005324
摘要

Protein contacts contain key information for the understanding of protein structure and function and thus, contact prediction from sequence is an important problem. Recently exciting progress has been made on this problem, but the predicted contacts for proteins without many sequence homologs is still of low quality and not very useful for de novo structure prediction.This paper presents a new deep learning method that predicts contacts by integrating both evolutionary coupling (EC) and sequence conservation information through an ultra-deep neural network formed by two deep residual neural networks. The first residual network conducts a series of 1-dimensional convolutional transformation of sequential features; the second residual network conducts a series of 2-dimensional convolutional transformation of pairwise information including output of the first residual network, EC information and pairwise potential. By using very deep residual networks, we can accurately model contact occurrence patterns and complex sequence-structure relationship and thus, obtain higher-quality contact prediction regardless of how many sequence homologs are available for proteins in question.Our method greatly outperforms existing methods and leads to much more accurate contact-assisted folding. Tested on 105 CASP11 targets, 76 past CAMEO hard targets, and 398 membrane proteins, the average top L long-range prediction accuracy obtained by our method, one representative EC method CCMpred and the CASP11 winner MetaPSICOV is 0.47, 0.21 and 0.30, respectively; the average top L/10 long-range accuracy of our method, CCMpred and MetaPSICOV is 0.77, 0.47 and 0.59, respectively. Ab initio folding using our predicted contacts as restraints but without any force fields can yield correct folds (i.e., TMscore>0.6) for 203 of the 579 test proteins, while that using MetaPSICOV- and CCMpred-predicted contacts can do so for only 79 and 62 of them, respectively. Our contact-assisted models also have much better quality than template-based models especially for membrane proteins. The 3D models built from our contact prediction have TMscore>0.5 for 208 of the 398 membrane proteins, while those from homology modeling have TMscore>0.5 for only 10 of them. Further, even if trained mostly by soluble proteins, our deep learning method works very well on membrane proteins. In the recent blind CAMEO benchmark, our fully-automated web server implementing this method successfully folded 6 targets with a new fold and only 0.3L-2.3L effective sequence homologs, including one β protein of 182 residues, one α+β protein of 125 residues, one α protein of 140 residues, one α protein of 217 residues, one α/β of 260 residues and one α protein of 462 residues. Our method also achieved the highest F1 score on free-modeling targets in the latest CASP (Critical Assessment of Structure Prediction), although it was not fully implemented back then.http://raptorx.uchicago.edu/ContactMap/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shuyu完成签到 ,获得积分10
1秒前
1秒前
4秒前
怕孤单的听寒完成签到,获得积分10
4秒前
轻松煎饼关注了科研通微信公众号
4秒前
healer发布了新的文献求助10
4秒前
5秒前
ailiceSa完成签到 ,获得积分10
5秒前
赘婿应助玻玻采纳,获得30
7秒前
8秒前
9秒前
abner完成签到,获得积分10
9秒前
Rigel发布了新的文献求助10
9秒前
ding应助淡定舞仙采纳,获得10
9秒前
yan完成签到,获得积分10
10秒前
10秒前
12秒前
Lucas应助star采纳,获得10
13秒前
a远离霓虹完成签到,获得积分10
13秒前
戚戚完成签到,获得积分10
13秒前
时尚的冷玉完成签到,获得积分10
13秒前
Steven完成签到,获得积分10
15秒前
16秒前
7even完成签到,获得积分20
16秒前
Aki发布了新的文献求助10
16秒前
16秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
深情安青应助科研通管家采纳,获得10
17秒前
愉快的真应助科研通管家采纳,获得40
18秒前
虚幻采枫发布了新的文献求助10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得20
18秒前
19秒前
yangm完成签到,获得积分10
19秒前
思源应助科研通管家采纳,获得10
19秒前
21秒前
xcr发布了新的文献求助10
21秒前
21秒前
23秒前
7even发布了新的文献求助30
23秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124422
求助须知:如何正确求助?哪些是违规求助? 2774782
关于积分的说明 7723789
捐赠科研通 2430217
什么是DOI,文献DOI怎么找? 1290974
科研通“疑难数据库(出版商)”最低求助积分说明 622023
版权声明 600297