Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model

深度学习 人工智能 计算机科学 卡斯普 蛋白质结构预测 从头算 同源建模 人工神经网络 模式识别(心理学) 蛋白质结构 生物系统 化学 生物 生物化学 有机化学
作者
Sheng Wang,Siqi Sun,Zhen Li,Renyu Zhang,Jinbo Xu
出处
期刊:PLOS Computational Biology [Public Library of Science]
卷期号:13 (1): e1005324-e1005324 被引量:882
标识
DOI:10.1371/journal.pcbi.1005324
摘要

Protein contacts contain key information for the understanding of protein structure and function and thus, contact prediction from sequence is an important problem. Recently exciting progress has been made on this problem, but the predicted contacts for proteins without many sequence homologs is still of low quality and not very useful for de novo structure prediction.This paper presents a new deep learning method that predicts contacts by integrating both evolutionary coupling (EC) and sequence conservation information through an ultra-deep neural network formed by two deep residual neural networks. The first residual network conducts a series of 1-dimensional convolutional transformation of sequential features; the second residual network conducts a series of 2-dimensional convolutional transformation of pairwise information including output of the first residual network, EC information and pairwise potential. By using very deep residual networks, we can accurately model contact occurrence patterns and complex sequence-structure relationship and thus, obtain higher-quality contact prediction regardless of how many sequence homologs are available for proteins in question.Our method greatly outperforms existing methods and leads to much more accurate contact-assisted folding. Tested on 105 CASP11 targets, 76 past CAMEO hard targets, and 398 membrane proteins, the average top L long-range prediction accuracy obtained by our method, one representative EC method CCMpred and the CASP11 winner MetaPSICOV is 0.47, 0.21 and 0.30, respectively; the average top L/10 long-range accuracy of our method, CCMpred and MetaPSICOV is 0.77, 0.47 and 0.59, respectively. Ab initio folding using our predicted contacts as restraints but without any force fields can yield correct folds (i.e., TMscore>0.6) for 203 of the 579 test proteins, while that using MetaPSICOV- and CCMpred-predicted contacts can do so for only 79 and 62 of them, respectively. Our contact-assisted models also have much better quality than template-based models especially for membrane proteins. The 3D models built from our contact prediction have TMscore>0.5 for 208 of the 398 membrane proteins, while those from homology modeling have TMscore>0.5 for only 10 of them. Further, even if trained mostly by soluble proteins, our deep learning method works very well on membrane proteins. In the recent blind CAMEO benchmark, our fully-automated web server implementing this method successfully folded 6 targets with a new fold and only 0.3L-2.3L effective sequence homologs, including one β protein of 182 residues, one α+β protein of 125 residues, one α protein of 140 residues, one α protein of 217 residues, one α/β of 260 residues and one α protein of 462 residues. Our method also achieved the highest F1 score on free-modeling targets in the latest CASP (Critical Assessment of Structure Prediction), although it was not fully implemented back then.http://raptorx.uchicago.edu/ContactMap/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
慕青应助影子采纳,获得10
1秒前
DJANGO发布了新的文献求助10
2秒前
圆锥香蕉应助小虎牙采纳,获得20
2秒前
3秒前
濮阳映萱发布了新的文献求助10
3秒前
4秒前
jam发布了新的文献求助10
4秒前
4秒前
YYYU完成签到,获得积分10
5秒前
5秒前
研友_n0QYAZ完成签到 ,获得积分10
6秒前
image发布了新的文献求助30
7秒前
科目三应助田一一采纳,获得30
7秒前
小杨关注了科研通微信公众号
8秒前
在水一方应助谦让之云采纳,获得10
9秒前
9秒前
史健完成签到,获得积分10
10秒前
10秒前
flow完成签到 ,获得积分10
11秒前
yznfly应助濮阳映萱采纳,获得30
14秒前
14秒前
CAOHOU应助Solar energy采纳,获得10
16秒前
18秒前
姜姜完成签到,获得积分10
19秒前
风清扬发布了新的文献求助10
19秒前
shufessm完成签到,获得积分0
21秒前
22秒前
23秒前
25秒前
penghui完成签到,获得积分10
26秒前
小年完成签到,获得积分10
26秒前
27秒前
谦让之云发布了新的文献求助10
28秒前
TiAmo发布了新的文献求助30
29秒前
cc完成签到 ,获得积分10
30秒前
次一口8完成签到,获得积分10
31秒前
31秒前
圆锥香蕉应助细心小鸭子采纳,获得20
31秒前
35秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962550
求助须知:如何正确求助?哪些是违规求助? 3508565
关于积分的说明 11141672
捐赠科研通 3241287
什么是DOI,文献DOI怎么找? 1791495
邀请新用户注册赠送积分活动 872888
科研通“疑难数据库(出版商)”最低求助积分说明 803474