亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A New Classification of Benign, Premalignant, and Malignant Endometrial Tissues Using Machine Learning Applied to 1413 Candidate Variables

随机森林 人工智能 分割 医学 病理 子宫内膜癌 计算机科学 机器学习 癌症 内科学
作者
Michael J. Downing,David Papke,Svitlana Tyekucheva,George L. Mutter
出处
期刊:International Journal of Gynecological Pathology [Ovid Technologies (Wolters Kluwer)]
卷期号:39 (4): 333-343 被引量:25
标识
DOI:10.1097/pgp.0000000000000615
摘要

Benign normal (NL), premalignant (endometrial intraepithelial neoplasia, EIN) and malignant (cancer, EMCA) endometria must be precisely distinguished for optimal management. EIN was objectively defined previously as a regression model incorporating manually traced histologic variables to predict clonal growth and cancer outcomes. Results from this early computational study were used to revise subjective endometrial precancer diagnostic criteria currently in use. We here use automated feature segmentation and updated machine learning algorithms to develop a new classification algorithm. Endometrial tissue from 148 patients was randomly separated into 72-patient training and 76-patient validation cohorts encompassing all 3 diagnostic classes. We applied image analysis software to keratin stained endometrial tissues to automatically segment whole-slide digital images into epithelium, cells, and nuclei and extract corresponding variables. A total of 1413 variables were culled to 75 based on random forest classification performance in a 3-group (NL, EIN, EMCA) model. This algorithm correctly classifies cases with 3-class error rates of 0.04 (training set) and 0.058 (validation set); and 2-class (NL vs. EIN+EMCA) error rate of 0.016 (training set) and 0 (validation set). The 4 most heavily weighted variables are surrogates of those previously identified in manual-segmentation machine learning studies (stromal and epithelial area percentages, and normalized epithelial surface lengths). Lesser weighted predictors include gland and lumen axis lengths and ratios, and individual cell measures. Automated image analysis and random forest classification algorithms can classify normal, premalignant, and malignant endometrial tissues. Highest predictive variables overlap with those discovered independently in early models based on manual segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
水木子尔完成签到,获得积分10
1秒前
BowieHuang应助科研通管家采纳,获得10
6秒前
Hayat应助ceeray23采纳,获得20
7秒前
19秒前
Criminology34应助ceeray23采纳,获得20
21秒前
蕴蝶发布了新的文献求助10
25秒前
一川完成签到,获得积分10
28秒前
蕴蝶完成签到,获得积分10
31秒前
34秒前
小江发布了新的文献求助10
41秒前
46秒前
优秀沛春完成签到,获得积分10
47秒前
乐乐应助OnlyHarbour采纳,获得10
49秒前
56秒前
1分钟前
andrele发布了新的文献求助100
1分钟前
大半个菜鸟完成签到,获得积分20
1分钟前
大个应助ceeray23采纳,获得20
1分钟前
1分钟前
CipherSage应助ceeray23采纳,获得20
1分钟前
1分钟前
1分钟前
1分钟前
2分钟前
害怕的板凳完成签到 ,获得积分10
2分钟前
BowieHuang应助科研通管家采纳,获得10
2分钟前
Ava应助科研通管家采纳,获得10
2分钟前
BowieHuang应助科研通管家采纳,获得10
2分钟前
寻道图强应助科研通管家采纳,获得50
2分钟前
ceeray23应助科研通管家采纳,获得30
2分钟前
BowieHuang应助科研通管家采纳,获得10
2分钟前
ceeray23应助科研通管家采纳,获得300
2分钟前
爱科研的小凡完成签到,获得积分10
2分钟前
2分钟前
稳重的冷亦完成签到,获得积分10
2分钟前
caca完成签到,获得积分0
2分钟前
星辰大海应助ceeray23采纳,获得20
2分钟前
柳行天完成签到 ,获得积分10
2分钟前
汉堡包应助Cmqq采纳,获得10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599776
求助须知:如何正确求助?哪些是违规求助? 4685512
关于积分的说明 14838542
捐赠科研通 4670527
什么是DOI,文献DOI怎么找? 2538202
邀请新用户注册赠送积分活动 1505527
关于科研通互助平台的介绍 1470904