A New Classification of Benign, Premalignant, and Malignant Endometrial Tissues Using Machine Learning Applied to 1413 Candidate Variables.

医学 病理 模式识别(心理学)
作者
Michael J. Downing,David J. Papke,Svitlana Tyekucheva,George L. Mutter
出处
期刊:International Journal of Gynecological Pathology [Ovid Technologies (Wolters Kluwer)]
卷期号:39 (4): 333-343 被引量:4
标识
DOI:10.1097/pgp.0000000000000615
摘要

Benign normal (NL), premalignant (endometrial intraepithelial neoplasia, EIN) and malignant (cancer, EMCA) endometria must be precisely distinguished for optimal management. EIN was objectively defined previously as a regression model incorporating manually traced histologic variables to predict clonal growth and cancer outcomes. Results from this early computational study were used to revise subjective endometrial precancer diagnostic criteria currently in use. We here use automated feature segmentation and updated machine learning algorithms to develop a new classification algorithm. Endometrial tissue from 148 patients was randomly separated into 72-patient training and 76-patient validation cohorts encompassing all 3 diagnostic classes. We applied image analysis software to keratin stained endometrial tissues to automatically segment whole-slide digital images into epithelium, cells, and nuclei and extract corresponding variables. A total of 1413 variables were culled to 75 based on random forest classification performance in a 3-group (NL, EIN, EMCA) model. This algorithm correctly classifies cases with 3-class error rates of 0.04 (training set) and 0.058 (validation set); and 2-class (NL vs. EIN+EMCA) error rate of 0.016 (training set) and 0 (validation set). The 4 most heavily weighted variables are surrogates of those previously identified in manual-segmentation machine learning studies (stromal and epithelial area percentages, and normalized epithelial surface lengths). Lesser weighted predictors include gland and lumen axis lengths and ratios, and individual cell measures. Automated image analysis and random forest classification algorithms can classify normal, premalignant, and malignant endometrial tissues. Highest predictive variables overlap with those discovered independently in early models based on manual segmentation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
加油呀发布了新的文献求助10
刚刚
小刘爱科研完成签到 ,获得积分10
1秒前
科研通AI2S应助zzzsss采纳,获得10
2秒前
2秒前
w。发布了新的文献求助10
2秒前
CodeCraft应助zengxi246采纳,获得10
3秒前
8R60d8应助科研通管家采纳,获得10
3秒前
不潮薯饼应助科研通管家采纳,获得10
3秒前
爱静静应助科研通管家采纳,获得10
3秒前
汉堡包应助科研通管家采纳,获得10
3秒前
爱静静应助科研通管家采纳,获得10
3秒前
8R60d8应助科研通管家采纳,获得10
3秒前
打打应助科研通管家采纳,获得10
3秒前
大个应助科研通管家采纳,获得10
3秒前
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
上官若男应助科研通管家采纳,获得10
4秒前
情怀应助科研通管家采纳,获得30
4秒前
爱静静应助科研通管家采纳,获得10
4秒前
4秒前
Ava应助js采纳,获得10
4秒前
4秒前
4秒前
4秒前
5秒前
5秒前
5秒前
5秒前
丘比特应助科研通管家采纳,获得10
5秒前
Leslie山野发布了新的文献求助10
9秒前
9秒前
板蓝根完成签到 ,获得积分20
9秒前
模糊中正应助欢呼的友容采纳,获得50
9秒前
田様应助sunzhuxi采纳,获得10
10秒前
lvsehx发布了新的文献求助10
10秒前
10秒前
半山完成签到,获得积分10
11秒前
11秒前
11秒前
大傻子发布了新的文献求助10
13秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3261058
求助须知:如何正确求助?哪些是违规求助? 2901992
关于积分的说明 8318508
捐赠科研通 2571708
什么是DOI,文献DOI怎么找? 1397242
科研通“疑难数据库(出版商)”最低求助积分说明 653684
邀请新用户注册赠送积分活动 632216