A New Classification of Benign, Premalignant, and Malignant Endometrial Tissues Using Machine Learning Applied to 1413 Candidate Variables.

医学 病理 模式识别(心理学)
作者
Michael J. Downing,David J. Papke,Svitlana Tyekucheva,George L. Mutter
出处
期刊:International Journal of Gynecological Pathology [Lippincott Williams & Wilkins]
卷期号:39 (4): 333-343 被引量:4
标识
DOI:10.1097/pgp.0000000000000615
摘要

Benign normal (NL), premalignant (endometrial intraepithelial neoplasia, EIN) and malignant (cancer, EMCA) endometria must be precisely distinguished for optimal management. EIN was objectively defined previously as a regression model incorporating manually traced histologic variables to predict clonal growth and cancer outcomes. Results from this early computational study were used to revise subjective endometrial precancer diagnostic criteria currently in use. We here use automated feature segmentation and updated machine learning algorithms to develop a new classification algorithm. Endometrial tissue from 148 patients was randomly separated into 72-patient training and 76-patient validation cohorts encompassing all 3 diagnostic classes. We applied image analysis software to keratin stained endometrial tissues to automatically segment whole-slide digital images into epithelium, cells, and nuclei and extract corresponding variables. A total of 1413 variables were culled to 75 based on random forest classification performance in a 3-group (NL, EIN, EMCA) model. This algorithm correctly classifies cases with 3-class error rates of 0.04 (training set) and 0.058 (validation set); and 2-class (NL vs. EIN+EMCA) error rate of 0.016 (training set) and 0 (validation set). The 4 most heavily weighted variables are surrogates of those previously identified in manual-segmentation machine learning studies (stromal and epithelial area percentages, and normalized epithelial surface lengths). Lesser weighted predictors include gland and lumen axis lengths and ratios, and individual cell measures. Automated image analysis and random forest classification algorithms can classify normal, premalignant, and malignant endometrial tissues. Highest predictive variables overlap with those discovered independently in early models based on manual segmentation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助科研通管家采纳,获得10
刚刚
Ava应助科研通管家采纳,获得30
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
菠萝吹雪完成签到,获得积分10
刚刚
科研通AI6应助科研通管家采纳,获得10
1秒前
丘比特应助科研通管家采纳,获得10
1秒前
Ava应助科研通管家采纳,获得10
1秒前
研友_nPb9e8完成签到,获得积分10
3秒前
鬼笔环肽完成签到,获得积分10
5秒前
8秒前
不吐泡的玻璃鱼完成签到,获得积分10
10秒前
Somnolence咩完成签到,获得积分10
12秒前
tangzanwayne发布了新的文献求助10
14秒前
英勇的红酒完成签到 ,获得积分10
14秒前
严西完成签到,获得积分10
15秒前
hah发布了新的文献求助30
15秒前
ouyekk完成签到,获得积分10
15秒前
NatureLee完成签到 ,获得积分10
15秒前
明天过后完成签到,获得积分10
15秒前
16秒前
量子星尘发布了新的文献求助10
16秒前
求知者1701完成签到,获得积分10
17秒前
马尔尼菲蓝状菌完成签到,获得积分10
18秒前
吃饱再睡完成签到 ,获得积分10
18秒前
zhangyujin完成签到,获得积分10
18秒前
狂野的海完成签到 ,获得积分10
19秒前
TEMPO完成签到 ,获得积分10
19秒前
拉长的芷烟完成签到 ,获得积分10
20秒前
21秒前
一氧化二氢完成签到,获得积分10
22秒前
你好啊完成签到,获得积分10
22秒前
甜蜜滑板完成签到,获得积分10
24秒前
11完成签到 ,获得积分10
24秒前
青青草完成签到,获得积分10
25秒前
叶123完成签到,获得积分10
25秒前
範範完成签到,获得积分10
25秒前
阿轰关注了科研通微信公众号
27秒前
iNk应助Jerry采纳,获得10
30秒前
量子星尘发布了新的文献求助10
31秒前
羊羊羊完成签到 ,获得积分10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4613473
求助须知:如何正确求助?哪些是违规求助? 4018149
关于积分的说明 12437211
捐赠科研通 3700700
什么是DOI,文献DOI怎么找? 2040870
邀请新用户注册赠送积分活动 1073600
科研通“疑难数据库(出版商)”最低求助积分说明 957258