A New Classification of Benign, Premalignant, and Malignant Endometrial Tissues Using Machine Learning Applied to 1413 Candidate Variables.

医学 病理 模式识别(心理学)
作者
Michael J. Downing,David J. Papke,Svitlana Tyekucheva,George L. Mutter
出处
期刊:International Journal of Gynecological Pathology [Ovid Technologies (Wolters Kluwer)]
卷期号:39 (4): 333-343 被引量:4
标识
DOI:10.1097/pgp.0000000000000615
摘要

Benign normal (NL), premalignant (endometrial intraepithelial neoplasia, EIN) and malignant (cancer, EMCA) endometria must be precisely distinguished for optimal management. EIN was objectively defined previously as a regression model incorporating manually traced histologic variables to predict clonal growth and cancer outcomes. Results from this early computational study were used to revise subjective endometrial precancer diagnostic criteria currently in use. We here use automated feature segmentation and updated machine learning algorithms to develop a new classification algorithm. Endometrial tissue from 148 patients was randomly separated into 72-patient training and 76-patient validation cohorts encompassing all 3 diagnostic classes. We applied image analysis software to keratin stained endometrial tissues to automatically segment whole-slide digital images into epithelium, cells, and nuclei and extract corresponding variables. A total of 1413 variables were culled to 75 based on random forest classification performance in a 3-group (NL, EIN, EMCA) model. This algorithm correctly classifies cases with 3-class error rates of 0.04 (training set) and 0.058 (validation set); and 2-class (NL vs. EIN+EMCA) error rate of 0.016 (training set) and 0 (validation set). The 4 most heavily weighted variables are surrogates of those previously identified in manual-segmentation machine learning studies (stromal and epithelial area percentages, and normalized epithelial surface lengths). Lesser weighted predictors include gland and lumen axis lengths and ratios, and individual cell measures. Automated image analysis and random forest classification algorithms can classify normal, premalignant, and malignant endometrial tissues. Highest predictive variables overlap with those discovered independently in early models based on manual segmentation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
潇潇雨歇完成签到,获得积分10
刚刚
小二郎应助圣晟胜采纳,获得10
刚刚
dianatseng14发布了新的文献求助10
1秒前
1秒前
yaoyy发布了新的文献求助10
1秒前
左友铭发布了新的文献求助10
1秒前
T=T生物完成签到,获得积分10
1秒前
海孩子完成签到,获得积分10
3秒前
潇潇雨歇发布了新的文献求助10
4秒前
领导范儿应助YYJ25采纳,获得10
4秒前
kldxxb发布了新的文献求助10
5秒前
Lynnyue发布了新的文献求助10
6秒前
科研通AI5应助诸笑白采纳,获得10
6秒前
余先生发布了新的文献求助10
7秒前
rosexu发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
yuuuu01完成签到,获得积分10
10秒前
完美世界应助左友铭采纳,获得10
11秒前
老老实实好好活着完成签到,获得积分10
11秒前
12秒前
xcc完成签到 ,获得积分10
12秒前
健忘捕发布了新的文献求助10
12秒前
chengqin完成签到 ,获得积分10
13秒前
15秒前
Akim应助圣晟胜采纳,获得10
17秒前
xcc发布了新的文献求助10
17秒前
丘比特应助TT采纳,获得10
17秒前
研友_LpAbjn完成签到,获得积分10
18秒前
FashionBoy应助YYJ25采纳,获得10
18秒前
英俊的铭应助GOD伟采纳,获得10
20秒前
20秒前
潇潇雨歇发布了新的文献求助10
20秒前
余先生完成签到,获得积分10
20秒前
21秒前
星梦完成签到 ,获得积分10
23秒前
问之完成签到,获得积分10
23秒前
哈呵嚯嘿呀完成签到,获得积分10
24秒前
DDDD应助rosexu采纳,获得10
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3528020
求助须知:如何正确求助?哪些是违规求助? 3108260
关于积分的说明 9288139
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540202
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849