A New Classification of Benign, Premalignant, and Malignant Endometrial Tissues Using Machine Learning Applied to 1413 Candidate Variables

随机森林 人工智能 分割 医学 病理 子宫内膜癌 计算机科学 机器学习 癌症 内科学
作者
Michael J. Downing,David Papke,Svitlana Tyekucheva,George L. Mutter
出处
期刊:International Journal of Gynecological Pathology [Ovid Technologies (Wolters Kluwer)]
卷期号:39 (4): 333-343 被引量:25
标识
DOI:10.1097/pgp.0000000000000615
摘要

Benign normal (NL), premalignant (endometrial intraepithelial neoplasia, EIN) and malignant (cancer, EMCA) endometria must be precisely distinguished for optimal management. EIN was objectively defined previously as a regression model incorporating manually traced histologic variables to predict clonal growth and cancer outcomes. Results from this early computational study were used to revise subjective endometrial precancer diagnostic criteria currently in use. We here use automated feature segmentation and updated machine learning algorithms to develop a new classification algorithm. Endometrial tissue from 148 patients was randomly separated into 72-patient training and 76-patient validation cohorts encompassing all 3 diagnostic classes. We applied image analysis software to keratin stained endometrial tissues to automatically segment whole-slide digital images into epithelium, cells, and nuclei and extract corresponding variables. A total of 1413 variables were culled to 75 based on random forest classification performance in a 3-group (NL, EIN, EMCA) model. This algorithm correctly classifies cases with 3-class error rates of 0.04 (training set) and 0.058 (validation set); and 2-class (NL vs. EIN+EMCA) error rate of 0.016 (training set) and 0 (validation set). The 4 most heavily weighted variables are surrogates of those previously identified in manual-segmentation machine learning studies (stromal and epithelial area percentages, and normalized epithelial surface lengths). Lesser weighted predictors include gland and lumen axis lengths and ratios, and individual cell measures. Automated image analysis and random forest classification algorithms can classify normal, premalignant, and malignant endometrial tissues. Highest predictive variables overlap with those discovered independently in early models based on manual segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
eric888应助wencan采纳,获得10
1秒前
乐乐应助Serena采纳,获得10
1秒前
2秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
Syne_发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
Siriluck完成签到 ,获得积分10
7秒前
luo发布了新的文献求助10
7秒前
wyw完成签到 ,获得积分10
8秒前
徐哈哈完成签到,获得积分10
8秒前
July完成签到 ,获得积分10
9秒前
上官若男应助keyantongxdl采纳,获得10
9秒前
123发布了新的文献求助10
9秒前
10秒前
孤雁北上发布了新的文献求助10
11秒前
12秒前
13秒前
刘振扬完成签到,获得积分10
14秒前
月下独酌完成签到,获得积分10
15秒前
zzzz完成签到,获得积分20
16秒前
17秒前
18秒前
蓝天应助ll200207采纳,获得10
18秒前
香蕉诗蕊应助Syne_采纳,获得10
19秒前
去码头整点薯条完成签到,获得积分10
19秒前
19秒前
可爱的函函应助里已经采纳,获得20
20秒前
20秒前
投必快业必毕完成签到,获得积分10
21秒前
阿润发布了新的文献求助10
22秒前
酷波er应助123采纳,获得10
23秒前
领导范儿应助孤雁北上采纳,获得10
23秒前
哈哈完成签到,获得积分10
24秒前
chen应助张宁宁采纳,获得20
24秒前
w1kend发布了新的文献求助10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5680022
求助须知:如何正确求助?哪些是违规求助? 4995227
关于积分的说明 15171337
捐赠科研通 4839788
什么是DOI,文献DOI怎么找? 2593645
邀请新用户注册赠送积分活动 1546635
关于科研通互助平台的介绍 1504749