算法
计算
稳健性(进化)
计算机科学
计算复杂性理论
高斯消去
独立同分布随机变量
贝叶斯概率
高斯分布
稀疏矩阵
设计矩阵
基质(化学分析)
消息传递
数学
线性模型
人工智能
随机变量
机器学习
统计
物理
基因
量子力学
复合材料
生物化学
化学
材料科学
程序设计语言
作者
Jiang Zhu,Lin Han,Xiangming Meng
出处
期刊:IEEE Access
[Institute of Electrical and Electronics Engineers]
日期:2018-12-28
卷期号:7: 7965-7976
被引量:21
标识
DOI:10.1109/access.2018.2890146
摘要
In this paper, an approximate message passing-based generalized sparse Bayesian learning (AMP-Gr-SBL) algorithm is proposed to reduce the computation complexity of the Gr-SBL algorithm, meanwhile improving the robustness of the GAMP algorithm against the measurement matrix deviated from the independent and identically distributed Gaussian matrix for the generalized linear model (GLM). According to expectation propagation, the original GLM is iteratively decoupled into two sub-modules: the standard linear model (SLM) module and the minimum mean-square-error module. For the SLM module, we apply the SBL algorithm, where the expectation step is replaced by the AMP algorithm to reduce the computation complexity significantly. The numerical results demonstrate the effectiveness of the proposed AMP-Gr-SBL algorithm.
科研通智能强力驱动
Strongly Powered by AbleSci AI