计算机科学
水准点(测量)
人工智能
关系(数据库)
关系抽取
人工神经网络
钥匙(锁)
机器学习
端到端原则
模式识别(心理学)
数据挖掘
大地测量学
计算机安全
地理
作者
Dat Quoc Nguyen,Karin Verspoor
标识
DOI:10.1007/978-3-030-15712-8_47
摘要
We propose a neural network model for joint extraction of named entities and relations between them, without any hand-crafted features. The key contribution of our model is to extend a BiLSTM-CRF-based entity recognition model with a deep biaffine attention layer to model second-order interactions between latent features for relation classification, specifically attending to the role of an entity in a directional relationship. On the benchmark "relation and entity recognition" dataset CoNLL04, experimental results show that our model outperforms previous models, producing new state-of-the-art performances.
科研通智能强力驱动
Strongly Powered by AbleSci AI