Global forensic geolocation with deep neural networks

地理定位 计算机科学 人工神经网络 数据挖掘 样品(材料) 数据科学 人工智能 化学 色谱法 万维网
作者
Neal S. Grantham,Brian J. Reich,Eric B. Laber,Krishna Pacifici,Robert R. Dunn,Noah Fierer,Matthew J. Gebert,Julia S. Allwood,Seth A. Faith
出处
期刊:Cornell University - arXiv
摘要

An important problem in forensic analyses is identifying the provenance of materials at a crime scene, such as biological material on a piece of clothing. This procedure, known as geolocation, is conventionally guided by expert knowledge of the biological evidence and therefore tends to be application-specific, labor-intensive, and subjective. Purely data-driven methods have yet to be fully realized due in part to the lack of a sufficiently rich data source. However, high-throughput sequencing technologies are able to identify tens of thousands of microbial taxa using DNA recovered from a single swab collected from nearly any object or surface. We present a new algorithm for geolocation that aggregates over an ensemble of deep neural network classifiers trained on randomly-generated Voronoi partitions of a spatial domain. We apply the algorithm to fungi present in each of 1300 dust samples collected across the continental United States and then to a global dataset of dust samples from 28 countries. Our algorithm makes remarkably good point predictions with more than half of the geolocation errors under 100 kilometers for the continental analysis and nearly 90% classification accuracy of a sample's country of origin for the global analysis. We suggest that the effectiveness of this model sets the stage for a new, quantitative approach to forensic geolocation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
墨墨叻发布了新的文献求助10
刚刚
1秒前
赘婿应助AIMS采纳,获得10
1秒前
anjun完成签到,获得积分10
2秒前
2秒前
SWAGGER123发布了新的文献求助10
2秒前
3秒前
3秒前
qcfy503发布了新的文献求助10
3秒前
齐桉完成签到 ,获得积分10
4秒前
4秒前
英俊的铭应助于初南采纳,获得10
4秒前
思源应助别先生采纳,获得10
5秒前
刘强完成签到,获得积分10
5秒前
6秒前
anjun发布了新的文献求助10
6秒前
Jack完成签到,获得积分10
6秒前
7秒前
linkman发布了新的文献求助10
7秒前
SWAGGER123完成签到,获得积分10
7秒前
8秒前
TGH发布了新的文献求助10
8秒前
浅夏发布了新的文献求助10
9秒前
卡卡西应助辛子采纳,获得20
10秒前
liherong发布了新的文献求助30
10秒前
含糊的立轩完成签到,获得积分10
10秒前
11秒前
11秒前
11秒前
张潇潇发布了新的文献求助10
11秒前
英俊的铭应助卧室哒帅哥采纳,获得10
11秒前
12秒前
隐形曼青应助太麻烦了啦采纳,获得10
12秒前
13秒前
13秒前
Orange应助专注的可乐采纳,获得10
13秒前
彼时光影发布了新的文献求助10
14秒前
14秒前
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952038
求助须知:如何正确求助?哪些是违规求助? 3497457
关于积分的说明 11087593
捐赠科研通 3228096
什么是DOI,文献DOI怎么找? 1784669
邀请新用户注册赠送积分活动 868839
科研通“疑难数据库(出版商)”最低求助积分说明 801198