Evaluation of Predicted Protein–Protein Complexes by Binding Free Energy Simulations

计算机科学 分子动力学 化学 化学物理 计算化学
作者
Till Siebenmorgen,Martin Zacharias
出处
期刊:Journal of Chemical Theory and Computation [American Chemical Society]
卷期号:15 (3): 2071-2086 被引量:51
标识
DOI:10.1021/acs.jctc.8b01022
摘要

The accurate prediction of protein-protein complex geometries is of major importance to ultimately model the complete interactome of interacting proteins in a cell. A major bottleneck is the realistic free energy evaluation of predicted docked structures. Typically, simple scoring functions applied to single-complex structures are employed that neglect conformational entropy and often solvent effects completely. The binding free energy of a predicted protein-protein complex can, however, be calculated using umbrella sampling (US) along a predefined dissociation/association coordinate of a complex. We employed atomistic US-molecular dynamics simulations including appropriate conformational and axial restraints and an implicit generalized Born solvent model to calculate binding free energies of a large set of docked decoys for 20 different complexes. Free energies associated with the restraints were calculated separately. In principle, the approach includes all energetic and entropic contributions to the binding process. The evaluation of docked complexes based on binding free energy calculation was in better agreement with experiment compared to a simple scoring based on energy minimization or MD refinement using exactly the same force field description. Even calculated absolute binding free energies of structures close to the native binding geometry showed a reasonable correlation to experiment. However, still for a number of complexes docked decoys of lower free energy than near-native geometries were found indicating inaccuracies in the force field or the implicit solvent model. Although time consuming the approach may open up a new route for realistic ranking of predicted geometries based on calculated free energy of binding.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
欢呼菀完成签到 ,获得积分10
2秒前
可爱的函函应助Yeyuntian采纳,获得10
3秒前
研友_V8Qmr8完成签到,获得积分10
5秒前
ltc完成签到,获得积分10
6秒前
清风醉完成签到,获得积分10
6秒前
keke完成签到,获得积分10
7秒前
RX信完成签到 ,获得积分10
7秒前
思源应助平淡翎采纳,获得10
9秒前
chengya完成签到,获得积分10
10秒前
11秒前
foxdaopo完成签到,获得积分10
11秒前
七七爱学习完成签到,获得积分10
11秒前
lzq完成签到 ,获得积分10
12秒前
w_完成签到,获得积分10
13秒前
你好啊完成签到,获得积分10
13秒前
寻道图强应助空城的回忆采纳,获得50
14秒前
Kiki完成签到 ,获得积分10
14秒前
知北完成签到,获得积分10
14秒前
小俞完成签到,获得积分10
15秒前
朵拉A梦完成签到,获得积分10
15秒前
john完成签到,获得积分10
16秒前
Darknewnew发布了新的文献求助10
16秒前
机会啊完成签到,获得积分10
16秒前
fuxiao完成签到 ,获得积分10
17秒前
开朗娩完成签到 ,获得积分10
17秒前
战战完成签到,获得积分10
18秒前
lhy12345给lhy12345的求助进行了留言
20秒前
Owen应助zl采纳,获得10
20秒前
所所应助李健春采纳,获得10
20秒前
耶斯耶斯发布了新的文献求助10
20秒前
混世大魔王先生完成签到,获得积分10
20秒前
ECCE713完成签到,获得积分10
22秒前
木头人完成签到,获得积分10
23秒前
高兴寒梦完成签到 ,获得积分10
23秒前
励志梦完成签到,获得积分10
24秒前
江知之完成签到 ,获得积分0
25秒前
陈俊雷发布了新的文献求助10
25秒前
weiye1992完成签到,获得积分10
26秒前
刘明锐完成签到,获得积分10
26秒前
高分求助中
Evolution 10000
CANCER DISCOVERY癌症研究的新前沿:中国科研领军人物的创新构想 中国专刊 500
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158687
求助须知:如何正确求助?哪些是违规求助? 2809923
关于积分的说明 7884302
捐赠科研通 2468638
什么是DOI,文献DOI怎么找? 1314374
科研通“疑难数据库(出版商)”最低求助积分说明 630601
版权声明 602012