Advances in Selective Laser Melting of Nitinol Shape Memory Alloy Part Production

形状记忆合金 选择性激光熔化 材料科学 假弹性 微观结构 惰性 近净形状 制作 智能材料 钛镍合金 合金 复合材料 马氏体 病理 物理 医学 替代医学 量子力学
作者
Josiah Cherian Chekotu,Robert Groarke,Kevin O’Toole,Dermot Brabazon
出处
期刊:Materials [MDPI AG]
卷期号:12 (5): 809-809 被引量:59
标识
DOI:10.3390/ma12050809
摘要

Nitinol (nickel-titanium or Ni-Ti) is the most utilized shape memory alloy due to its good superelasticity, shape memory effect, low stiffness, damping, biocompatibility, and corrosion resistance. Various material characteristics, such as sensitivity to composition and production thermal gradients, make conventional methods ineffective for the manufacture of high quality complex Nitinol components. These issues can be resolved by modern additive manufacturing (AM) methods which can produce net or near-net shape parts with highly precise and complex Nitinol structures. Compared to Laser Engineered Net Shape (LENS), Selective Laser Melting (SLM) has the benefit of more easily creating a high quality local inert atmosphere which protects chemically-reactive Nitinol powders to a higher degree. In this paper, the most recent publications related to the SLM processing of Nitinol are reviewed to identify the various influential factors involved and process-related issues. It is reported how powder quality and material composition have a significant effect on the produced microstructures and phase transformations. The effect of heat treatments after SLM fabrication on the functional and mechanical properties are noted. Optimization of several operating parameters were found to be critical in fabricating Nitinol parts of high density. The importance of processing parameters and related thermal cooling gradient which are crucial for obtaining the correct phase structure for shape memory capabilities are also presented. The paper concludes by presenting the significant findings and areas of prospective future research in relation to the SLM processing of Nitinol.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1097完成签到 ,获得积分10
2秒前
所所应助科研通管家采纳,获得10
3秒前
yar应助科研通管家采纳,获得10
3秒前
东方欲晓应助科研通管家采纳,获得10
3秒前
yar应助科研通管家采纳,获得10
3秒前
yar应助科研通管家采纳,获得10
3秒前
3秒前
丰知然应助科研通管家采纳,获得10
3秒前
丰知然应助科研通管家采纳,获得10
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
丰知然应助科研通管家采纳,获得10
4秒前
乐乐应助科研通管家采纳,获得10
4秒前
4秒前
membrane应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
朱荧荧发布了新的文献求助10
4秒前
隐形曼青应助科研通管家采纳,获得10
4秒前
星辰大海应助科研通管家采纳,获得10
4秒前
乐乐应助科研通管家采纳,获得10
4秒前
劲秉应助科研通管家采纳,获得20
4秒前
4秒前
5秒前
蟹蟹发布了新的文献求助10
7秒前
妮妮发布了新的文献求助30
7秒前
9秒前
红红完成签到,获得积分20
12秒前
12秒前
wanci应助蟹蟹采纳,获得10
13秒前
科研老炮发布了新的文献求助10
14秒前
ACOY应助团子采纳,获得10
14秒前
烟花应助西门醉卉采纳,获得10
15秒前
15秒前
小小sci发布了新的文献求助10
16秒前
夜已深完成签到,获得积分10
16秒前
lin完成签到 ,获得积分10
18秒前
小可爱完成签到,获得积分10
20秒前
21秒前
seven完成签到 ,获得积分10
21秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
环境的想象:梭罗、自然写作和美国文化的形成 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3304319
求助须知:如何正确求助?哪些是违规求助? 2938315
关于积分的说明 8488060
捐赠科研通 2612780
什么是DOI,文献DOI怎么找? 1426863
科研通“疑难数据库(出版商)”最低求助积分说明 662866
邀请新用户注册赠送积分活动 647369