A computational framework for the detection of subcortical brain dysmaturation in neonatal MRI using 3D Convolutional Neural Networks

计算机科学 人工智能 卷积神经网络 深度学习 神经影像学 模式识别(心理学) 脑形态计量学 人工神经网络 神经科学 磁共振成像 医学 心理学 放射科
作者
Rafael Ceschin,Alexandria Zahner,William Reynolds,Jenna Gaesser,Giulio Zuccoli,Cecilia Lo,Vanathi Gopalakrishnan,Ashok Panigrahy
出处
期刊:NeuroImage [Elsevier BV]
卷期号:178: 183-197 被引量:36
标识
DOI:10.1016/j.neuroimage.2018.05.049
摘要

Deep neural networks are increasingly being used in both supervised learning for classification tasks and unsupervised learning to derive complex patterns from the input data. However, the successful implementation of deep neural networks using neuroimaging datasets requires adequate sample size for training and well-defined signal intensity based structural differentiation. There is a lack of effective automated diagnostic tools for the reliable detection of brain dysmaturation in the neonatal period, related to small sample size and complex undifferentiated brain structures, despite both translational research and clinical importance. Volumetric information alone is insufficient for diagnosis. In this study, we developed a computational framework for the automated classification of brain dysmaturation from neonatal MRI, by combining a specific deep neural network implementation with neonatal structural brain segmentation as a method for both clinical pattern recognition and data-driven inference into the underlying structural morphology. We implemented three-dimensional convolution neural networks (3D-CNNs) to specifically classify dysplastic cerebelli, a subset of surface-based subcortical brain dysmaturation, in term infants born with congenital heart disease. We obtained a 0.985 ± 0. 0241-classification accuracy of subtle cerebellar dysplasia in CHD using 10-fold cross-validation. Furthermore, the hidden layer activations and class activation maps depicted regional vulnerability of the superior surface of the cerebellum, (composed of mostly the posterior lobe and the midline vermis), in regards to differentiating the dysplastic process from normal tissue. The posterior lobe and the midline vermis provide regional differentiation that is relevant to not only to the clinical diagnosis of cerebellar dysplasia, but also genetic mechanisms and neurodevelopmental outcome correlates. These findings not only contribute to the detection and classification of a subset of neonatal brain dysmaturation, but also provide insight to the pathogenesis of cerebellar dysplasia in CHD. In addition, this is one of the first examples of the application of deep learning to a neuroimaging dataset, in which the hidden layer activation revealed diagnostically and biologically relevant features about the clinical pathogenesis. The code developed for this project is open source, published under the BSD License, and designed to be generalizable to applications both within and beyond neonatal brain imaging.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
单薄雪枫完成签到,获得积分10
2秒前
SYLH应助霍明轩采纳,获得10
4秒前
4秒前
怡然文龙完成签到,获得积分10
4秒前
doin发布了新的文献求助10
5秒前
5秒前
5秒前
zoey完成签到,获得积分10
5秒前
,,完成签到,获得积分10
6秒前
6秒前
6秒前
Lucas应助爱吃姜的面条采纳,获得10
6秒前
斯文败类应助周周采纳,获得10
7秒前
li完成签到,获得积分10
7秒前
小郭应助飞云采纳,获得10
7秒前
xianwenyang完成签到 ,获得积分10
7秒前
等待的砖家完成签到,获得积分10
7秒前
ruby完成签到,获得积分10
7秒前
汉堡包应助yysghr采纳,获得10
7秒前
大模型应助yu5546采纳,获得10
8秒前
宣智完成签到,获得积分10
8秒前
张津浩完成签到,获得积分10
8秒前
福明明发布了新的文献求助10
9秒前
小二郎应助典雅的静采纳,获得10
9秒前
勤恳思卉发布了新的文献求助10
9秒前
大好人发布了新的文献求助10
9秒前
10秒前
深情冷雪发布了新的文献求助10
11秒前
小确幸发布了新的文献求助10
12秒前
哔哔话完成签到 ,获得积分10
13秒前
量子星尘发布了新的文献求助10
13秒前
怡然文龙发布了新的文献求助10
13秒前
13秒前
13秒前
SuperZzz发布了新的文献求助30
14秒前
我是老大应助时倾采纳,获得10
14秒前
霉菌敏完成签到,获得积分10
14秒前
想喝奶茶发布了新的文献求助10
15秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961728
求助须知:如何正确求助?哪些是违规求助? 3508080
关于积分的说明 11139419
捐赠科研通 3240738
什么是DOI,文献DOI怎么找? 1791017
邀请新用户注册赠送积分活动 872696
科研通“疑难数据库(出版商)”最低求助积分说明 803344