A computational framework for the detection of subcortical brain dysmaturation in neonatal MRI using 3D Convolutional Neural Networks

计算机科学 人工智能 卷积神经网络 深度学习 神经影像学 模式识别(心理学) 脑形态计量学 人工神经网络 神经科学 磁共振成像 医学 心理学 放射科
作者
Rafael Ceschin,Alexandria Zahner,William Reynolds,Jenna Gaesser,Giulio Zuccoli,Cecilia Lo,Vanathi Gopalakrishnan,Ashok Panigrahy
出处
期刊:NeuroImage [Elsevier]
卷期号:178: 183-197 被引量:36
标识
DOI:10.1016/j.neuroimage.2018.05.049
摘要

Deep neural networks are increasingly being used in both supervised learning for classification tasks and unsupervised learning to derive complex patterns from the input data. However, the successful implementation of deep neural networks using neuroimaging datasets requires adequate sample size for training and well-defined signal intensity based structural differentiation. There is a lack of effective automated diagnostic tools for the reliable detection of brain dysmaturation in the neonatal period, related to small sample size and complex undifferentiated brain structures, despite both translational research and clinical importance. Volumetric information alone is insufficient for diagnosis. In this study, we developed a computational framework for the automated classification of brain dysmaturation from neonatal MRI, by combining a specific deep neural network implementation with neonatal structural brain segmentation as a method for both clinical pattern recognition and data-driven inference into the underlying structural morphology. We implemented three-dimensional convolution neural networks (3D-CNNs) to specifically classify dysplastic cerebelli, a subset of surface-based subcortical brain dysmaturation, in term infants born with congenital heart disease. We obtained a 0.985 ± 0. 0241-classification accuracy of subtle cerebellar dysplasia in CHD using 10-fold cross-validation. Furthermore, the hidden layer activations and class activation maps depicted regional vulnerability of the superior surface of the cerebellum, (composed of mostly the posterior lobe and the midline vermis), in regards to differentiating the dysplastic process from normal tissue. The posterior lobe and the midline vermis provide regional differentiation that is relevant to not only to the clinical diagnosis of cerebellar dysplasia, but also genetic mechanisms and neurodevelopmental outcome correlates. These findings not only contribute to the detection and classification of a subset of neonatal brain dysmaturation, but also provide insight to the pathogenesis of cerebellar dysplasia in CHD. In addition, this is one of the first examples of the application of deep learning to a neuroimaging dataset, in which the hidden layer activation revealed diagnostically and biologically relevant features about the clinical pathogenesis. The code developed for this project is open source, published under the BSD License, and designed to be generalizable to applications both within and beyond neonatal brain imaging.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雪花落在丛林完成签到,获得积分10
1秒前
2秒前
一二一发布了新的文献求助10
3秒前
救驾来迟完成签到,获得积分10
5秒前
5秒前
橡树完成签到,获得积分10
6秒前
循环bug完成签到,获得积分10
6秒前
南屿完成签到,获得积分10
6秒前
大壮_0808完成签到,获得积分10
6秒前
6秒前
青菜发布了新的文献求助10
8秒前
8R60d8应助雪花落在丛林采纳,获得10
9秒前
Andy发布了新的文献求助10
10秒前
星辰大海应助射天狼采纳,获得10
11秒前
12秒前
12秒前
YYYYWZ完成签到,获得积分10
13秒前
英姑应助一二一采纳,获得10
13秒前
13秒前
lll发布了新的文献求助10
15秒前
所所应助18746005898采纳,获得10
15秒前
Migue发布了新的文献求助10
16秒前
sirius完成签到,获得积分10
16秒前
严昌完成签到,获得积分20
16秒前
HIT_C完成签到 ,获得积分10
17秒前
ff完成签到,获得积分10
18秒前
cxr发布了新的文献求助10
18秒前
19秒前
20秒前
20秒前
四川知名猛男完成签到 ,获得积分10
24秒前
瑞瑞发布了新的文献求助10
24秒前
lll完成签到,获得积分20
25秒前
cxr完成签到,获得积分10
25秒前
粗暴的醉卉完成签到,获得积分10
25秒前
酷酷碧发布了新的文献求助30
25秒前
快乐应助zyc采纳,获得10
26秒前
丘比特应助xuuuuumin采纳,获得10
31秒前
WSR完成签到 ,获得积分10
32秒前
小蘑菇应助科研通管家采纳,获得10
32秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157519
求助须知:如何正确求助?哪些是违规求助? 2808900
关于积分的说明 7878979
捐赠科研通 2467322
什么是DOI,文献DOI怎么找? 1313355
科研通“疑难数据库(出版商)”最低求助积分说明 630395
版权声明 601919