A computational framework for the detection of subcortical brain dysmaturation in neonatal MRI using 3D Convolutional Neural Networks

计算机科学 人工智能 卷积神经网络 深度学习 神经影像学 模式识别(心理学) 脑形态计量学 人工神经网络 神经科学 磁共振成像 医学 心理学 放射科
作者
Rafael Ceschin,Alexandria Zahner,William Reynolds,Jenna Gaesser,Giulio Zuccoli,Cecilia Lo,Vanathi Gopalakrishnan,Ashok Panigrahy
出处
期刊:NeuroImage [Elsevier]
卷期号:178: 183-197 被引量:36
标识
DOI:10.1016/j.neuroimage.2018.05.049
摘要

Deep neural networks are increasingly being used in both supervised learning for classification tasks and unsupervised learning to derive complex patterns from the input data. However, the successful implementation of deep neural networks using neuroimaging datasets requires adequate sample size for training and well-defined signal intensity based structural differentiation. There is a lack of effective automated diagnostic tools for the reliable detection of brain dysmaturation in the neonatal period, related to small sample size and complex undifferentiated brain structures, despite both translational research and clinical importance. Volumetric information alone is insufficient for diagnosis. In this study, we developed a computational framework for the automated classification of brain dysmaturation from neonatal MRI, by combining a specific deep neural network implementation with neonatal structural brain segmentation as a method for both clinical pattern recognition and data-driven inference into the underlying structural morphology. We implemented three-dimensional convolution neural networks (3D-CNNs) to specifically classify dysplastic cerebelli, a subset of surface-based subcortical brain dysmaturation, in term infants born with congenital heart disease. We obtained a 0.985 ± 0. 0241-classification accuracy of subtle cerebellar dysplasia in CHD using 10-fold cross-validation. Furthermore, the hidden layer activations and class activation maps depicted regional vulnerability of the superior surface of the cerebellum, (composed of mostly the posterior lobe and the midline vermis), in regards to differentiating the dysplastic process from normal tissue. The posterior lobe and the midline vermis provide regional differentiation that is relevant to not only to the clinical diagnosis of cerebellar dysplasia, but also genetic mechanisms and neurodevelopmental outcome correlates. These findings not only contribute to the detection and classification of a subset of neonatal brain dysmaturation, but also provide insight to the pathogenesis of cerebellar dysplasia in CHD. In addition, this is one of the first examples of the application of deep learning to a neuroimaging dataset, in which the hidden layer activation revealed diagnostically and biologically relevant features about the clinical pathogenesis. The code developed for this project is open source, published under the BSD License, and designed to be generalizable to applications both within and beyond neonatal brain imaging.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
謃河鷺起完成签到,获得积分10
1秒前
shinble发布了新的文献求助10
1秒前
2秒前
usdivff发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
夏冰雹完成签到 ,获得积分10
3秒前
大模型应助LL爱读书采纳,获得10
3秒前
Lucas应助pero采纳,获得10
3秒前
4秒前
吮指原味鸡完成签到,获得积分20
4秒前
4秒前
violet发布了新的文献求助10
5秒前
杨涵发布了新的文献求助10
5秒前
5秒前
WUHUIWEN完成签到,获得积分10
5秒前
慕青应助香蕉傲菡采纳,获得30
6秒前
皮咻完成签到,获得积分10
6秒前
和光同尘完成签到,获得积分10
6秒前
7秒前
慕青应助zw采纳,获得10
8秒前
hh发布了新的文献求助10
8秒前
大圈圈发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
9秒前
10秒前
方圆发布了新的文献求助30
10秒前
10秒前
11秒前
科研通AI6应助淡淡姿采纳,获得10
12秒前
怡然梦竹发布了新的文献求助10
12秒前
12秒前
汉堡包应助Ethan采纳,获得10
13秒前
王1发布了新的文献求助10
13秒前
科研通AI6应助香菜头采纳,获得10
13秒前
隐形曼青应助尺素寸心采纳,获得10
14秒前
14秒前
szr发布了新的文献求助10
15秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620874
求助须知:如何正确求助?哪些是违规求助? 4705521
关于积分的说明 14932362
捐赠科研通 4763666
什么是DOI,文献DOI怎么找? 2551356
邀请新用户注册赠送积分活动 1513817
关于科研通互助平台的介绍 1474715