EEG‐based outcome prediction after cardiac arrest with convolutional neural networks: Performance and visualization of discriminative features

卷积神经网络 判别式 可视化 脑电图 人工智能 计算机科学 结果(博弈论) 模式识别(心理学) 人工神经网络 神经科学 心理学 数学 数理经济学
作者
Stefan Jonas,Andrea O. Rossetti,Mauro Oddo,Simon Jenni,Paolo Favaro,Frédéric Zubler
出处
期刊:Human Brain Mapping [Wiley]
卷期号:40 (16): 4606-4617 被引量:52
标识
DOI:10.1002/hbm.24724
摘要

Abstract Prognostication for comatose patients after cardiac arrest is a difficult but essential task. Currently, visual interpretation of electroencephalogram (EEG) is one of the main modality used in outcome prediction. There is a growing interest in computer‐assisted EEG interpretation, either to overcome the possible subjectivity of visual interpretation, or to identify complex features of the EEG signal. We used a one‐dimensional convolutional neural network (CNN) to predict functional outcome based on 19‐channel‐EEG recorded from 267 adult comatose patients during targeted temperature management after CA. The area under the receiver operating characteristic curve (AUC) on the test set was 0.885. Interestingly, model architecture and fine‐tuning only played a marginal role in classification performance. We then used gradient‐weighted class activation mapping (Grad‐CAM) as visualization technique to identify which EEG features were used by the network to classify an EEG epoch as favorable or unfavorable outcome, and also to understand failures of the network. Grad‐CAM showed that the network relied on similar features than classical visual analysis for predicting unfavorable outcome (suppressed background, epileptiform transients). This study confirms that CNNs are promising models for EEG‐based prognostication in comatose patients, and that Grad‐CAM can provide explanation for the models' decision‐making, which is of utmost importance for future use of deep learning models in a clinical setting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
典雅的俊驰应助李玉兰采纳,获得30
刚刚
CodeCraft应助一兀采纳,获得10
刚刚
风趣问蕊发布了新的文献求助10
1秒前
科研波比关注了科研通微信公众号
1秒前
1秒前
贪玩发布了新的文献求助20
2秒前
2秒前
2秒前
ntfn完成签到,获得积分10
3秒前
Simms完成签到,获得积分10
4秒前
骨科小周完成签到,获得积分10
5秒前
淡淡芷天应助小摆采纳,获得10
6秒前
游阿游发布了新的文献求助10
6秒前
小蘑菇应助xyhua925采纳,获得10
6秒前
13981592626发布了新的文献求助10
6秒前
执着的觅露完成签到 ,获得积分10
7秒前
爆米花应助JUNO采纳,获得10
7秒前
7秒前
8秒前
8秒前
8秒前
千秋梧完成签到,获得积分20
8秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
KKK完成签到,获得积分10
9秒前
风清扬应助一口吸十只猫采纳,获得20
9秒前
小龙女给小龙女的求助进行了留言
9秒前
10秒前
fandada完成签到 ,获得积分10
10秒前
所所应助LL采纳,获得10
10秒前
顾矜应助王贺帅采纳,获得10
10秒前
HeAuBook应助王手采纳,获得20
11秒前
小马甲应助紫川采纳,获得10
11秒前
Zac发布了新的文献求助10
12秒前
12秒前
15秒前
sauncaiyu发布了新的文献求助10
15秒前
HZ完成签到 ,获得积分10
15秒前
闲听花落发布了新的文献求助10
16秒前
呀哈哈发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5074229
求助须知:如何正确求助?哪些是违规求助? 4294374
关于积分的说明 13381128
捐赠科研通 4115792
什么是DOI,文献DOI怎么找? 2253873
邀请新用户注册赠送积分活动 1258494
关于科研通互助平台的介绍 1191343