EEG‐based outcome prediction after cardiac arrest with convolutional neural networks: Performance and visualization of discriminative features

卷积神经网络 判别式 可视化 脑电图 人工智能 计算机科学 结果(博弈论) 模式识别(心理学) 人工神经网络 神经科学 心理学 数学 数理经济学
作者
Stefan Jonas,Andrea O. Rossetti,Mauro Oddo,Simon Jenni,Paolo Favaro,Frédéric Zubler
出处
期刊:Human Brain Mapping [Wiley]
卷期号:40 (16): 4606-4617 被引量:52
标识
DOI:10.1002/hbm.24724
摘要

Abstract Prognostication for comatose patients after cardiac arrest is a difficult but essential task. Currently, visual interpretation of electroencephalogram (EEG) is one of the main modality used in outcome prediction. There is a growing interest in computer‐assisted EEG interpretation, either to overcome the possible subjectivity of visual interpretation, or to identify complex features of the EEG signal. We used a one‐dimensional convolutional neural network (CNN) to predict functional outcome based on 19‐channel‐EEG recorded from 267 adult comatose patients during targeted temperature management after CA. The area under the receiver operating characteristic curve (AUC) on the test set was 0.885. Interestingly, model architecture and fine‐tuning only played a marginal role in classification performance. We then used gradient‐weighted class activation mapping (Grad‐CAM) as visualization technique to identify which EEG features were used by the network to classify an EEG epoch as favorable or unfavorable outcome, and also to understand failures of the network. Grad‐CAM showed that the network relied on similar features than classical visual analysis for predicting unfavorable outcome (suppressed background, epileptiform transients). This study confirms that CNNs are promising models for EEG‐based prognostication in comatose patients, and that Grad‐CAM can provide explanation for the models' decision‐making, which is of utmost importance for future use of deep learning models in a clinical setting.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
ding应助xiaoju采纳,获得10
1秒前
1秒前
YR应助Certainty橙子采纳,获得20
1秒前
哀莫丶哀生完成签到 ,获得积分10
1秒前
太阳雨发布了新的文献求助10
1秒前
1秒前
Hello应助孔明采纳,获得10
2秒前
2秒前
huaming发布了新的文献求助10
2秒前
bkagyin应助syy080837采纳,获得10
3秒前
九bai发布了新的文献求助10
3秒前
3秒前
Vita完成签到,获得积分10
3秒前
wxx完成签到,获得积分10
4秒前
4秒前
田盐盐发布了新的文献求助10
4秒前
研友_84WJXZ发布了新的文献求助10
4秒前
rikii完成签到 ,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
roooosewang完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
搜集达人应助健达奇趣蛋采纳,获得10
5秒前
zzy完成签到,获得积分10
5秒前
晚阳应助bingbing采纳,获得30
6秒前
6秒前
6秒前
Ryo完成签到,获得积分10
6秒前
7秒前
夏冰发布了新的文献求助10
7秒前
7秒前
科研通AI6应助dongjingbutaire采纳,获得10
7秒前
传奇3应助DM采纳,获得10
7秒前
7秒前
整齐的爆米花完成签到 ,获得积分10
8秒前
8秒前
半个榴莲完成签到,获得积分10
8秒前
开朗的乐蕊完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667660
求助须知:如何正确求助?哪些是违规求助? 4887012
关于积分的说明 15121059
捐赠科研通 4826441
什么是DOI,文献DOI怎么找? 2584044
邀请新用户注册赠送积分活动 1538066
关于科研通互助平台的介绍 1496210