EEG‐based outcome prediction after cardiac arrest with convolutional neural networks: Performance and visualization of discriminative features

卷积神经网络 判别式 可视化 脑电图 人工智能 计算机科学 结果(博弈论) 模式识别(心理学) 人工神经网络 神经科学 心理学 数学 数理经济学
作者
Stefan Jonas,Andrea O. Rossetti,Mauro Oddo,Simon Jenni,Paolo Favaro,Frédéric Zubler
出处
期刊:Human Brain Mapping [Wiley]
卷期号:40 (16): 4606-4617 被引量:52
标识
DOI:10.1002/hbm.24724
摘要

Abstract Prognostication for comatose patients after cardiac arrest is a difficult but essential task. Currently, visual interpretation of electroencephalogram (EEG) is one of the main modality used in outcome prediction. There is a growing interest in computer‐assisted EEG interpretation, either to overcome the possible subjectivity of visual interpretation, or to identify complex features of the EEG signal. We used a one‐dimensional convolutional neural network (CNN) to predict functional outcome based on 19‐channel‐EEG recorded from 267 adult comatose patients during targeted temperature management after CA. The area under the receiver operating characteristic curve (AUC) on the test set was 0.885. Interestingly, model architecture and fine‐tuning only played a marginal role in classification performance. We then used gradient‐weighted class activation mapping (Grad‐CAM) as visualization technique to identify which EEG features were used by the network to classify an EEG epoch as favorable or unfavorable outcome, and also to understand failures of the network. Grad‐CAM showed that the network relied on similar features than classical visual analysis for predicting unfavorable outcome (suppressed background, epileptiform transients). This study confirms that CNNs are promising models for EEG‐based prognostication in comatose patients, and that Grad‐CAM can provide explanation for the models' decision‐making, which is of utmost importance for future use of deep learning models in a clinical setting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
荷包蛋发布了新的文献求助10
1秒前
思源应助DW采纳,获得10
1秒前
司南完成签到,获得积分10
1秒前
2秒前
2秒前
wsl发布了新的文献求助10
3秒前
恩雁发布了新的文献求助50
3秒前
科目三应助优雅涔雨采纳,获得10
3秒前
3秒前
5秒前
科研发布了新的文献求助10
6秒前
乐观德地应助范慧晨采纳,获得10
7秒前
LEMONS发布了新的文献求助10
7秒前
刘佳婷发布了新的文献求助10
7秒前
www完成签到,获得积分10
8秒前
9秒前
子铭发布了新的文献求助10
9秒前
ghost完成签到,获得积分10
9秒前
123完成签到,获得积分10
10秒前
11秒前
Orange应助恩雁采纳,获得50
12秒前
12秒前
12秒前
田様应助荷包蛋采纳,获得10
12秒前
英姑应助LEMONS采纳,获得10
13秒前
Metbutterly完成签到,获得积分20
13秒前
13秒前
14秒前
上官若男应助菠萝派采纳,获得10
14秒前
14秒前
科研完成签到,获得积分10
14秒前
Hello应助gg采纳,获得10
15秒前
15秒前
DW发布了新的文献求助10
15秒前
16秒前
高兴冬灵发布了新的文献求助10
16秒前
丑丑阿发布了新的文献求助10
17秒前
快乐的猪完成签到,获得积分10
17秒前
18秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161515
求助须知:如何正确求助?哪些是违规求助? 2812855
关于积分的说明 7897372
捐赠科研通 2471768
什么是DOI,文献DOI怎么找? 1316137
科研通“疑难数据库(出版商)”最低求助积分说明 631193
版权声明 602112