EEG‐based outcome prediction after cardiac arrest with convolutional neural networks: Performance and visualization of discriminative features

卷积神经网络 判别式 可视化 脑电图 人工智能 计算机科学 结果(博弈论) 模式识别(心理学) 人工神经网络 神经科学 心理学 数学 数理经济学
作者
Stefan Jonas,Andrea O. Rossetti,Mauro Oddo,Simon Jenni,Paolo Favaro,Frédéric Zubler
出处
期刊:Human Brain Mapping [Wiley]
卷期号:40 (16): 4606-4617 被引量:52
标识
DOI:10.1002/hbm.24724
摘要

Abstract Prognostication for comatose patients after cardiac arrest is a difficult but essential task. Currently, visual interpretation of electroencephalogram (EEG) is one of the main modality used in outcome prediction. There is a growing interest in computer‐assisted EEG interpretation, either to overcome the possible subjectivity of visual interpretation, or to identify complex features of the EEG signal. We used a one‐dimensional convolutional neural network (CNN) to predict functional outcome based on 19‐channel‐EEG recorded from 267 adult comatose patients during targeted temperature management after CA. The area under the receiver operating characteristic curve (AUC) on the test set was 0.885. Interestingly, model architecture and fine‐tuning only played a marginal role in classification performance. We then used gradient‐weighted class activation mapping (Grad‐CAM) as visualization technique to identify which EEG features were used by the network to classify an EEG epoch as favorable or unfavorable outcome, and also to understand failures of the network. Grad‐CAM showed that the network relied on similar features than classical visual analysis for predicting unfavorable outcome (suppressed background, epileptiform transients). This study confirms that CNNs are promising models for EEG‐based prognostication in comatose patients, and that Grad‐CAM can provide explanation for the models' decision‐making, which is of utmost importance for future use of deep learning models in a clinical setting.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dongjie发布了新的文献求助10
刚刚
刚刚
刚刚
土豆发布了新的文献求助10
刚刚
开心完成签到,获得积分10
1秒前
1秒前
潇洒的冰烟完成签到,获得积分10
1秒前
1秒前
科研通AI6应助Xu采纳,获得10
1秒前
1秒前
慕青应助rui采纳,获得10
2秒前
虎皮狗椒发布了新的文献求助10
2秒前
万能图书馆应助gao采纳,获得10
3秒前
3秒前
romeo发布了新的文献求助30
4秒前
janice发布了新的文献求助10
4秒前
严珍珍完成签到 ,获得积分10
4秒前
薄荷味完成签到,获得积分10
5秒前
脑洞疼应助伊洛采纳,获得10
5秒前
6秒前
无极微光应助维嘉采纳,获得20
6秒前
sunshine发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
7秒前
田様应助abb先生采纳,获得10
7秒前
积木123完成签到,获得积分10
7秒前
BowieHuang应助VDC采纳,获得10
8秒前
科研通AI6应助高玉峰采纳,获得10
11秒前
romeo发布了新的文献求助10
11秒前
爆米花应助缥缈的涵菡采纳,获得10
11秒前
周周完成签到,获得积分10
12秒前
爆米花应助jzy采纳,获得10
12秒前
李健的小迷弟应助sunshine采纳,获得10
13秒前
14秒前
romeo发布了新的文献求助10
15秒前
yxsxm完成签到,获得积分10
16秒前
迪歪歪应助阳光热狗采纳,获得20
16秒前
16秒前
17秒前
17秒前
17秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5615168
求助须知:如何正确求助?哪些是违规求助? 4700058
关于积分的说明 14906318
捐赠科研通 4741317
什么是DOI,文献DOI怎么找? 2547956
邀请新用户注册赠送积分活动 1511725
关于科研通互助平台的介绍 1473774