EEG‐based outcome prediction after cardiac arrest with convolutional neural networks: Performance and visualization of discriminative features

卷积神经网络 判别式 可视化 脑电图 人工智能 计算机科学 结果(博弈论) 模式识别(心理学) 人工神经网络 神经科学 心理学 数学 数理经济学
作者
Stefan Jonas,Andrea O. Rossetti,Mauro Oddo,Simon Jenni,Paolo Favaro,Frédéric Zubler
出处
期刊:Human Brain Mapping [Wiley]
卷期号:40 (16): 4606-4617 被引量:52
标识
DOI:10.1002/hbm.24724
摘要

Abstract Prognostication for comatose patients after cardiac arrest is a difficult but essential task. Currently, visual interpretation of electroencephalogram (EEG) is one of the main modality used in outcome prediction. There is a growing interest in computer‐assisted EEG interpretation, either to overcome the possible subjectivity of visual interpretation, or to identify complex features of the EEG signal. We used a one‐dimensional convolutional neural network (CNN) to predict functional outcome based on 19‐channel‐EEG recorded from 267 adult comatose patients during targeted temperature management after CA. The area under the receiver operating characteristic curve (AUC) on the test set was 0.885. Interestingly, model architecture and fine‐tuning only played a marginal role in classification performance. We then used gradient‐weighted class activation mapping (Grad‐CAM) as visualization technique to identify which EEG features were used by the network to classify an EEG epoch as favorable or unfavorable outcome, and also to understand failures of the network. Grad‐CAM showed that the network relied on similar features than classical visual analysis for predicting unfavorable outcome (suppressed background, epileptiform transients). This study confirms that CNNs are promising models for EEG‐based prognostication in comatose patients, and that Grad‐CAM can provide explanation for the models' decision‐making, which is of utmost importance for future use of deep learning models in a clinical setting.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助壮观梦易采纳,获得10
1秒前
周全敏完成签到 ,获得积分10
2秒前
dalei001完成签到 ,获得积分10
3秒前
4秒前
歪歪完成签到,获得积分10
5秒前
科研通AI2S应助研友_rLmrgn采纳,获得10
5秒前
6秒前
糯米种子完成签到,获得积分10
7秒前
8秒前
llllll完成签到,获得积分10
9秒前
Lyue发布了新的文献求助10
9秒前
林非鹿发布了新的文献求助30
9秒前
科目三应助苗条的寒珊采纳,获得10
12秒前
大龙哥886应助大力的问蕊采纳,获得10
13秒前
13秒前
黎娅完成签到 ,获得积分10
14秒前
mjc完成签到 ,获得积分10
15秒前
andy完成签到,获得积分10
15秒前
Orange应助ttg990720采纳,获得10
15秒前
科研通AI2S应助葡萄柚采纳,获得10
17秒前
nn完成签到,获得积分10
17秒前
英俊的铭应助幸福台灯采纳,获得10
18秒前
bingsu108完成签到,获得积分10
19秒前
19秒前
19秒前
顾矜应助楼梯口无头女孩采纳,获得10
20秒前
FashionBoy应助明理慕灵采纳,获得10
21秒前
英俊的铭应助歪歪采纳,获得10
21秒前
22秒前
23秒前
24秒前
24秒前
nan发布了新的文献求助10
24秒前
huangbing123发布了新的文献求助10
25秒前
妙手回春板蓝根完成签到,获得积分10
26秒前
27秒前
27秒前
森森发布了新的文献求助10
28秒前
科研通AI2S应助杭笑寒采纳,获得10
29秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565622
求助须知:如何正确求助?哪些是违规求助? 4650680
关于积分的说明 14692351
捐赠科研通 4592670
什么是DOI,文献DOI怎么找? 2519689
邀请新用户注册赠送积分活动 1492102
关于科研通互助平台的介绍 1463281