亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

EEG‐based outcome prediction after cardiac arrest with convolutional neural networks: Performance and visualization of discriminative features

卷积神经网络 判别式 可视化 脑电图 人工智能 计算机科学 结果(博弈论) 模式识别(心理学) 人工神经网络 神经科学 心理学 数学 数理经济学
作者
Stefan Jonas,Andrea O. Rossetti,Mauro Oddo,Simon Jenni,Paolo Favaro,Frédéric Zubler
出处
期刊:Human Brain Mapping [Wiley]
卷期号:40 (16): 4606-4617 被引量:52
标识
DOI:10.1002/hbm.24724
摘要

Abstract Prognostication for comatose patients after cardiac arrest is a difficult but essential task. Currently, visual interpretation of electroencephalogram (EEG) is one of the main modality used in outcome prediction. There is a growing interest in computer‐assisted EEG interpretation, either to overcome the possible subjectivity of visual interpretation, or to identify complex features of the EEG signal. We used a one‐dimensional convolutional neural network (CNN) to predict functional outcome based on 19‐channel‐EEG recorded from 267 adult comatose patients during targeted temperature management after CA. The area under the receiver operating characteristic curve (AUC) on the test set was 0.885. Interestingly, model architecture and fine‐tuning only played a marginal role in classification performance. We then used gradient‐weighted class activation mapping (Grad‐CAM) as visualization technique to identify which EEG features were used by the network to classify an EEG epoch as favorable or unfavorable outcome, and also to understand failures of the network. Grad‐CAM showed that the network relied on similar features than classical visual analysis for predicting unfavorable outcome (suppressed background, epileptiform transients). This study confirms that CNNs are promising models for EEG‐based prognostication in comatose patients, and that Grad‐CAM can provide explanation for the models' decision‐making, which is of utmost importance for future use of deep learning models in a clinical setting.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhang发布了新的文献求助10
3秒前
9秒前
11秒前
航行天下完成签到 ,获得积分10
11秒前
薛雨佳发布了新的文献求助10
13秒前
14秒前
14秒前
传奇3应助tingtingliuok采纳,获得10
14秒前
昵称发布了新的文献求助20
17秒前
科研通AI6应助2jz采纳,获得10
22秒前
25秒前
tingtingliuok发布了新的文献求助10
29秒前
NexusExplorer应助科研通管家采纳,获得10
33秒前
大模型应助科研通管家采纳,获得10
33秒前
shhoing应助科研通管家采纳,获得10
33秒前
arizaki7应助科研通管家采纳,获得10
33秒前
斯文败类应助科研通管家采纳,获得10
33秒前
33秒前
科研通AI2S应助科研通管家采纳,获得30
33秒前
orixero应助阿宇采纳,获得10
34秒前
36秒前
Creami完成签到,获得积分10
36秒前
37秒前
橘子先森发布了新的文献求助10
42秒前
积极的糖豆完成签到 ,获得积分10
42秒前
科研通AI6应助阿宇采纳,获得10
43秒前
44秒前
nini完成签到,获得积分10
47秒前
48秒前
56秒前
1分钟前
1分钟前
1分钟前
李大刚完成签到 ,获得积分10
1分钟前
2534165发布了新的文献求助10
1分钟前
lige完成签到 ,获得积分10
1分钟前
1分钟前
oMayii完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5538556
求助须知:如何正确求助?哪些是违规求助? 4625681
关于积分的说明 14596670
捐赠科研通 4566308
什么是DOI,文献DOI怎么找? 2503215
邀请新用户注册赠送积分活动 1481337
关于科研通互助平台的介绍 1452673