Prediction and Localization of Student Engagement in the Wild

计算机科学 脱离理论 任务(项目管理) 人工智能 凝视 机器学习 学生参与度 支持向量机 深度学习 监督学习 人机交互 人工神经网络 数学教育 心理学 老年学 医学 经济 管理
作者
Amanjot Kaur,Aamir Mustafa,Love Mehta,Abhinav Dhall
标识
DOI:10.1109/dicta.2018.8615851
摘要

Digital revolution has transformed the traditional teaching procedures, students are going online to access study materials. It is realised that analysis of student engagement in an e-learning environment would facilitate effective task accomplishment and learning. Well known social cues of engagement/disengagement can be inferred from facial expressions, body movements and gaze patterns. In this paper, student's response to various stimuli (educational videos) are recorded and cues are extracted to estimate variations in engagement level. We study the association of a subject's behavioral cues with his/her engagement level, as annotated by labelers. We have localized engaging/non-engaging parts in the stimuli videos using a deep multiple instance learning based framework, which can give useful insight into designing Massive Open Online Courses (MOOCs) video material. Recognizing the lack of any publicly available dataset in the domain of user engagement, a new ‘in the wild’ dataset is curated. The dataset: Engagement in the Wild contains 264 videos captured from 91 subjects, which is approximately 16.5 hours of recording. Detailed baseline results using different classifiers ranging from traditional machine learning to deep learning based approaches are evaluated on the database. Subject independent analysis is performed and the task of engagement prediction is modeled as a weakly supervised learning problem. The dataset is manually annotated by different labelers and the correlation studies between annotated and predicted labels of videos by different classifiers are reported. This dataset creation is an effort to facilitate research in various e-learning environments such as intelligent tutoring systems, MOOCs, and others.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
852应助Harlotte采纳,获得10
1秒前
1秒前
1秒前
Yang发布了新的文献求助10
2秒前
无花果应助机智的宛白采纳,获得10
2秒前
Hayworth发布了新的文献求助10
2秒前
传奇3应助程平采纳,获得10
3秒前
Winkhl发布了新的文献求助10
3秒前
张辛蕊发布了新的文献求助10
3秒前
3秒前
3秒前
nocap666发布了新的文献求助10
4秒前
5秒前
S77发布了新的文献求助10
5秒前
半柚发布了新的文献求助10
6秒前
6秒前
缙云山2020发布了新的文献求助10
6秒前
思源应助科研通管家采纳,获得10
6秒前
6秒前
千空发布了新的文献求助10
6秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
ding应助科研通管家采纳,获得10
7秒前
JamesPei应助科研通管家采纳,获得10
7秒前
NexusExplorer应助科研通管家采纳,获得10
7秒前
汉堡包应助科研通管家采纳,获得10
7秒前
7秒前
Ava应助科研通管家采纳,获得10
7秒前
7秒前
8秒前
8秒前
斯文败类应助zhiyume采纳,获得10
8秒前
8秒前
胡图图完成签到 ,获得积分10
8秒前
内向秀发完成签到,获得积分10
9秒前
华仔应助开会胡萝卜采纳,获得10
9秒前
从容不弱完成签到,获得积分10
9秒前
9秒前
老迟到的惋清完成签到,获得积分20
10秒前
10秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3744647
求助须知:如何正确求助?哪些是违规求助? 3287652
关于积分的说明 10054403
捐赠科研通 3003835
什么是DOI,文献DOI怎么找? 1649214
邀请新用户注册赠送积分活动 785173
科研通“疑难数据库(出版商)”最低求助积分说明 750949