Prediction and Localization of Student Engagement in the Wild

计算机科学 脱离理论 任务(项目管理) 人工智能 凝视 机器学习 学生参与度 支持向量机 深度学习 监督学习 人机交互 人工神经网络 数学教育 心理学 老年学 医学 经济 管理
作者
Amanjot Kaur,Aamir Mustafa,Love Mehta,Abhinav Dhall
标识
DOI:10.1109/dicta.2018.8615851
摘要

Digital revolution has transformed the traditional teaching procedures, students are going online to access study materials. It is realised that analysis of student engagement in an e-learning environment would facilitate effective task accomplishment and learning. Well known social cues of engagement/disengagement can be inferred from facial expressions, body movements and gaze patterns. In this paper, student's response to various stimuli (educational videos) are recorded and cues are extracted to estimate variations in engagement level. We study the association of a subject's behavioral cues with his/her engagement level, as annotated by labelers. We have localized engaging/non-engaging parts in the stimuli videos using a deep multiple instance learning based framework, which can give useful insight into designing Massive Open Online Courses (MOOCs) video material. Recognizing the lack of any publicly available dataset in the domain of user engagement, a new ‘in the wild’ dataset is curated. The dataset: Engagement in the Wild contains 264 videos captured from 91 subjects, which is approximately 16.5 hours of recording. Detailed baseline results using different classifiers ranging from traditional machine learning to deep learning based approaches are evaluated on the database. Subject independent analysis is performed and the task of engagement prediction is modeled as a weakly supervised learning problem. The dataset is manually annotated by different labelers and the correlation studies between annotated and predicted labels of videos by different classifiers are reported. This dataset creation is an effort to facilitate research in various e-learning environments such as intelligent tutoring systems, MOOCs, and others.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HZH发布了新的文献求助10
2秒前
2秒前
lante发布了新的文献求助10
2秒前
Mabel发布了新的文献求助10
3秒前
xfye发布了新的文献求助20
3秒前
4秒前
4秒前
4秒前
6秒前
麦克阿宇发布了新的文献求助10
6秒前
7秒前
7秒前
JamesPei应助科研通管家采纳,获得10
7秒前
Jasper应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得30
7秒前
FashionBoy应助科研通管家采纳,获得10
7秒前
Lucas应助科研通管家采纳,获得10
7秒前
脑洞疼应助科研通管家采纳,获得10
7秒前
ED应助科研通管家采纳,获得20
8秒前
8秒前
搜集达人应助科研通管家采纳,获得10
8秒前
桐桐应助科研通管家采纳,获得10
8秒前
eric888应助科研通管家采纳,获得150
8秒前
8秒前
充电宝应助科研通管家采纳,获得10
8秒前
佳佳应助科研通管家采纳,获得20
8秒前
8秒前
8秒前
8秒前
8秒前
王359发布了新的文献求助10
10秒前
风趣从露发布了新的文献求助10
12秒前
天边发布了新的文献求助10
12秒前
深情安青应助111采纳,获得10
13秒前
柏林寒冬应助赵乂采纳,获得10
13秒前
暗杀睡美人完成签到,获得积分10
14秒前
Lucas应助漫画采纳,获得10
16秒前
16秒前
16秒前
丘比特应助坚定的芸采纳,获得10
17秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993971
求助须知:如何正确求助?哪些是违规求助? 3534571
关于积分的说明 11265961
捐赠科研通 3274483
什么是DOI,文献DOI怎么找? 1806363
邀请新用户注册赠送积分活动 883224
科研通“疑难数据库(出版商)”最低求助积分说明 809712