Prediction and Localization of Student Engagement in the Wild

计算机科学 脱离理论 任务(项目管理) 人工智能 凝视 机器学习 学生参与度 支持向量机 深度学习 监督学习 人机交互 人工神经网络 数学教育 心理学 老年学 医学 经济 管理
作者
Amanjot Kaur,Aamir Mustafa,Love Mehta,Abhinav Dhall
标识
DOI:10.1109/dicta.2018.8615851
摘要

Digital revolution has transformed the traditional teaching procedures, students are going online to access study materials. It is realised that analysis of student engagement in an e-learning environment would facilitate effective task accomplishment and learning. Well known social cues of engagement/disengagement can be inferred from facial expressions, body movements and gaze patterns. In this paper, student's response to various stimuli (educational videos) are recorded and cues are extracted to estimate variations in engagement level. We study the association of a subject's behavioral cues with his/her engagement level, as annotated by labelers. We have localized engaging/non-engaging parts in the stimuli videos using a deep multiple instance learning based framework, which can give useful insight into designing Massive Open Online Courses (MOOCs) video material. Recognizing the lack of any publicly available dataset in the domain of user engagement, a new ‘in the wild’ dataset is curated. The dataset: Engagement in the Wild contains 264 videos captured from 91 subjects, which is approximately 16.5 hours of recording. Detailed baseline results using different classifiers ranging from traditional machine learning to deep learning based approaches are evaluated on the database. Subject independent analysis is performed and the task of engagement prediction is modeled as a weakly supervised learning problem. The dataset is manually annotated by different labelers and the correlation studies between annotated and predicted labels of videos by different classifiers are reported. This dataset creation is an effort to facilitate research in various e-learning environments such as intelligent tutoring systems, MOOCs, and others.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CCY发布了新的文献求助10
1秒前
YANGLan发布了新的文献求助10
1秒前
3秒前
4秒前
4秒前
Nancy发布了新的文献求助10
5秒前
7秒前
julia发布了新的文献求助30
9秒前
9秒前
10秒前
大饼卷肉完成签到,获得积分10
10秒前
wuyouwuyou发布了新的文献求助10
12秒前
运医瘦瘦花生完成签到,获得积分10
13秒前
JamesPei应助SCL采纳,获得10
13秒前
稻草人发布了新的文献求助10
15秒前
Hello应助黄油屑屑采纳,获得10
15秒前
共享精神应助细心的三颜采纳,获得10
15秒前
18秒前
19秒前
20秒前
塞尔达发布了新的文献求助10
21秒前
21秒前
Ch驳回了赘婿应助
21秒前
22秒前
阔达碧空完成签到,获得积分10
22秒前
22秒前
SciGPT应助zizilala采纳,获得10
22秒前
ot发布了新的文献求助20
22秒前
平芜尽处完成签到,获得积分10
23秒前
答案本身发布了新的文献求助10
24秒前
Nancy完成签到,获得积分20
24秒前
晓慕发布了新的文献求助10
25秒前
不爱科研发布了新的文献求助10
25秒前
25秒前
ZQJ发布了新的文献求助10
27秒前
科研通AI2S应助8888拉采纳,获得10
29秒前
liu发布了新的文献求助10
29秒前
阔达碧空发布了新的文献求助10
29秒前
李健的小迷弟应助YuF采纳,获得10
31秒前
上官若男应助否认冶游史采纳,获得10
31秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 遗传学 化学工程 基因 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3412516
求助须知:如何正确求助?哪些是违规求助? 3015217
关于积分的说明 8869123
捐赠科研通 2702867
什么是DOI,文献DOI怎么找? 1481929
科研通“疑难数据库(出版商)”最低求助积分说明 685086
邀请新用户注册赠送积分活动 679733