A Deep Neural Network for Unsupervised Anomaly Detection and Diagnosis in Multivariate Time Series Data

计算机科学 异常检测 多元统计 卷积神经网络 模式识别(心理学) 时间序列 人工智能 编码 数据挖掘 机器学习 生物化学 基因 化学
作者
Chuxu Zhang,Dongjin Song,Yuncong Chen,Xinyang Feng,Cristian Lumezanu,Wei Cheng,Jingchao Ni,Bo Zong,Haifeng Chen,Nitesh V. Chawla
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:33 (01): 1409-1416 被引量:501
标识
DOI:10.1609/aaai.v33i01.33011409
摘要

Nowadays, multivariate time series data are increasingly collected in various real world systems, e.g., power plants, wearable devices, etc. Anomaly detection and diagnosis in multivariate time series refer to identifying abnormal status in certain time steps and pinpointing the root causes. Building such a system, however, is challenging since it not only requires to capture the temporal dependency in each time series, but also need encode the inter-correlations between different pairs of time series. In addition, the system should be robust to noise and provide operators with different levels of anomaly scores based upon the severity of different incidents. Despite the fact that a number of unsupervised anomaly detection algorithms have been developed, few of them can jointly address these challenges. In this paper, we propose a Multi-Scale Convolutional Recurrent Encoder-Decoder (MSCRED), to perform anomaly detection and diagnosis in multivariate time series data. Specifically, MSCRED first constructs multi-scale (resolution) signature matrices to characterize multiple levels of the system statuses in different time steps. Subsequently, given the signature matrices, a convolutional encoder is employed to encode the inter-sensor (time series) correlations and an attention based Convolutional Long-Short Term Memory (ConvLSTM) network is developed to capture the temporal patterns. Finally, based upon the feature maps which encode the inter-sensor correlations and temporal information, a convolutional decoder is used to reconstruct the input signature matrices and the residual signature matrices are further utilized to detect and diagnose anomalies. Extensive empirical studies based on a synthetic dataset and a real power plant dataset demonstrate that MSCRED can outperform state-ofthe-art baseline methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助liurenmm采纳,获得10
刚刚
木头羊完成签到,获得积分10
刚刚
今后应助Ash采纳,获得10
2秒前
3秒前
稳重的若雁应助pqq1987pqq采纳,获得10
4秒前
ssz完成签到 ,获得积分10
4秒前
Aqua完成签到,获得积分10
6秒前
6秒前
dbndlk完成签到,获得积分10
6秒前
7秒前
不配.应助筋筋子采纳,获得20
7秒前
7秒前
8秒前
LZY发布了新的文献求助10
9秒前
sin_Lee发布了新的文献求助10
9秒前
9秒前
相宜完成签到,获得积分10
10秒前
10秒前
唐同学完成签到,获得积分10
11秒前
梦断奈何完成签到 ,获得积分10
11秒前
Negan完成签到,获得积分10
12秒前
sz发布了新的文献求助10
12秒前
正直的妍完成签到,获得积分10
12秒前
13秒前
眯眯眼的电脑完成签到 ,获得积分10
13秒前
13秒前
阿鹿发布了新的文献求助10
13秒前
魔笛的云宝完成签到,获得积分10
14秒前
Ricky完成签到,获得积分10
14秒前
万能图书馆应助LZY采纳,获得10
14秒前
14秒前
Ash发布了新的文献求助10
14秒前
16秒前
Clover04给Ralmia的求助进行了留言
16秒前
16秒前
17秒前
阿泽完成签到,获得积分10
17秒前
GJL完成签到,获得积分10
18秒前
乐观紫霜发布了新的文献求助10
18秒前
18秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3144039
求助须知:如何正确求助?哪些是违规求助? 2795729
关于积分的说明 7816229
捐赠科研通 2451740
什么是DOI,文献DOI怎么找? 1304659
科研通“疑难数据库(出版商)”最低求助积分说明 627286
版权声明 601419