Label Propagation Ensemble for Hyperspectral Image Classification

高光谱成像 像素 模式识别(心理学) 人工智能 计算机科学 线性子空间 子空间拓扑 随机子空间法 维数之咒 图形 支持向量机 集成学习 机器学习 数学 理论计算机科学 几何学
作者
Youqiang Zhang,Guo Cao,Ayesha Shafique,Peng Fu
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:12 (9): 3623-3636 被引量:22
标识
DOI:10.1109/jstars.2019.2926123
摘要

The imbalance between limited labeled pixels and high dimensionality of hyperspectral data can easily give rise to Hughes phenomenon. Semisupervised learning (SSL) methods provide promising solutions to address the aforementioned issue. Graph-based SSL algorithms, also called label propagation methods, have obtained increasing attention in hyperspectral image (HSI) classification. However, the graphs constructed by utilizing the geometrical structure similarity of samples are unreliable due to the high dimensionality and complexity of the HSIs, especially for the case of very limited labeled pixels. Our motivation is to construct label propagation ensemble (LPE) model, then use the decision fusion of multiple label propagations to obtain pseudolabeled pixels with high classification confidence. In LPE, random subspace method is introduced to partition the feature space into multiple subspaces, then several label propagation models are constructed on corresponding subspaces, finally the results of different label propagation models are fused at decision level, and only the unlabeled pixels whose label propagation results are the same will be assigned with pseudolabels. Meanwhile extreme learning machine classifiers are trained on the labeled and pseudolabeled samples during the iteration. Compared with traditional label propagation methods, our proposed method can deal with the situation of very limited labeled samples by providing pseudolabeled pixels with high classification confidence, consequently, the accurate base classifiers are obtained. To demonstrate the effectiveness of the proposed method, LPE is compared with several state-of-the-art methods on four hyperspectral datasets. In addition, the method that only use label propagation is investigated to show the importance of ensemble technique in LPE. The experimental results demonstrate that the proposed method can provide competitive solution for HSI classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助考拉采纳,获得10
1秒前
紫陌发布了新的文献求助10
2秒前
希波克拉顶完成签到,获得积分10
3秒前
柔弱的千秋完成签到,获得积分20
4秒前
4秒前
5秒前
好大一只小坏蛋完成签到,获得积分10
5秒前
7秒前
lan完成签到,获得积分10
7秒前
7秒前
wx发布了新的文献求助10
8秒前
8秒前
24K金纯发布了新的文献求助10
9秒前
NexusExplorer应助Aurora.H采纳,获得10
11秒前
kk发布了新的文献求助100
11秒前
12秒前
13秒前
大方芷文发布了新的文献求助10
14秒前
希望天下0贩的0应助Uload采纳,获得10
15秒前
小巧的洋葱完成签到 ,获得积分10
15秒前
温柔一刀发布了新的文献求助10
16秒前
量子星尘发布了新的文献求助10
16秒前
16秒前
研友_LpQGjn完成签到 ,获得积分10
17秒前
赘婿应助Mark采纳,获得10
18秒前
祁尒完成签到,获得积分10
19秒前
19秒前
20秒前
LL发布了新的文献求助10
21秒前
空帆船发布了新的文献求助10
22秒前
爆米花应助千灯采纳,获得10
23秒前
流飒完成签到,获得积分10
24秒前
烟花应助husker采纳,获得10
26秒前
在水一方应助小夏咕噜采纳,获得10
27秒前
乐乐应助倪倪采纳,获得10
27秒前
田様应助Rabbit采纳,获得10
29秒前
29秒前
30秒前
30秒前
31秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956697
求助须知:如何正确求助?哪些是违规求助? 3502770
关于积分的说明 11110029
捐赠科研通 3233693
什么是DOI,文献DOI怎么找? 1787452
邀请新用户注册赠送积分活动 870685
科研通“疑难数据库(出版商)”最低求助积分说明 802152