Label Propagation Ensemble for Hyperspectral Image Classification

高光谱成像 像素 模式识别(心理学) 人工智能 计算机科学 线性子空间 子空间拓扑 随机子空间法 维数之咒 图形 支持向量机 集成学习 机器学习 数学 理论计算机科学 几何学
作者
Youqiang Zhang,Guo Cao,Ayesha Shafique,Peng Fu
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:12 (9): 3623-3636 被引量:22
标识
DOI:10.1109/jstars.2019.2926123
摘要

The imbalance between limited labeled pixels and high dimensionality of hyperspectral data can easily give rise to Hughes phenomenon. Semisupervised learning (SSL) methods provide promising solutions to address the aforementioned issue. Graph-based SSL algorithms, also called label propagation methods, have obtained increasing attention in hyperspectral image (HSI) classification. However, the graphs constructed by utilizing the geometrical structure similarity of samples are unreliable due to the high dimensionality and complexity of the HSIs, especially for the case of very limited labeled pixels. Our motivation is to construct label propagation ensemble (LPE) model, then use the decision fusion of multiple label propagations to obtain pseudolabeled pixels with high classification confidence. In LPE, random subspace method is introduced to partition the feature space into multiple subspaces, then several label propagation models are constructed on corresponding subspaces, finally the results of different label propagation models are fused at decision level, and only the unlabeled pixels whose label propagation results are the same will be assigned with pseudolabels. Meanwhile extreme learning machine classifiers are trained on the labeled and pseudolabeled samples during the iteration. Compared with traditional label propagation methods, our proposed method can deal with the situation of very limited labeled samples by providing pseudolabeled pixels with high classification confidence, consequently, the accurate base classifiers are obtained. To demonstrate the effectiveness of the proposed method, LPE is compared with several state-of-the-art methods on four hyperspectral datasets. In addition, the method that only use label propagation is investigated to show the importance of ensemble technique in LPE. The experimental results demonstrate that the proposed method can provide competitive solution for HSI classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
珈蓝完成签到,获得积分10
2秒前
嘎嘎嘎嘎发布了新的文献求助10
2秒前
wuwuxiang完成签到,获得积分20
2秒前
大林发布了新的文献求助30
3秒前
ExtroGod发布了新的文献求助10
3秒前
空2完成签到 ,获得积分10
3秒前
Lucas应助zhangjian采纳,获得10
4秒前
玉衡完成签到,获得积分10
4秒前
小狐狸完成签到,获得积分20
5秒前
乐观寻雪完成签到,获得积分10
5秒前
王彤彤发布了新的文献求助10
5秒前
瑶瑶酱完成签到,获得积分10
6秒前
Mz完成签到,获得积分10
6秒前
txy完成签到,获得积分10
7秒前
明亮的代灵完成签到 ,获得积分10
8秒前
右右完成签到,获得积分10
8秒前
jor666完成签到,获得积分10
8秒前
duanyujie完成签到,获得积分10
8秒前
neurodawn发布了新的文献求助10
8秒前
回来完成签到,获得积分10
9秒前
9秒前
泡泡完成签到 ,获得积分10
9秒前
haimianxi完成签到,获得积分10
9秒前
古古怪界丶黑大帅完成签到,获得积分10
10秒前
孤独收割人完成签到,获得积分10
11秒前
ttt完成签到,获得积分10
11秒前
小蘑菇应助王彤彤采纳,获得10
11秒前
ding应助unflycn采纳,获得10
13秒前
JamesPei应助清雨采纳,获得10
13秒前
14秒前
和和完成签到,获得积分10
14秒前
豆乳完成签到,获得积分10
15秒前
五斤老陈醋完成签到,获得积分10
16秒前
ljycasey完成签到,获得积分10
16秒前
辛勤夜安完成签到 ,获得积分10
16秒前
不配.应助瘦瘦小萱采纳,获得20
17秒前
17秒前
steventj完成签到,获得积分10
17秒前
高分求助中
Evolution 3rd edition 1500
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
the development of the right of privacy in new york 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3180176
求助须知:如何正确求助?哪些是违规求助? 2830569
关于积分的说明 7978633
捐赠科研通 2492138
什么是DOI,文献DOI怎么找? 1329232
科研通“疑难数据库(出版商)”最低求助积分说明 635705
版权声明 602954