膜
醋酸纤维素
化学工程
热重分析
聚合物
纳滤
化学
渗透
核化学
扫描电子显微镜
材料科学
色谱法
有机化学
复合材料
生物化学
工程类
作者
H. Idress,Syed Zohaib Javaid Zaidi,Aneela Sabir,Muhammad Shafiq,Rafi Ullah Khan,Christian Harito,Sammer-ul Hassan,Frank C. Walsh
标识
DOI:10.1038/s41598-020-80384-0
摘要
Abstract This study investigates the removal of Pb(II) using polymer matrix membranes, cellulose acetate/vinyl triethoxysilane modified graphene oxide and gum Arabic (GuA) membranes. These complexation-NF membranes were successfully synthesized via dissolution casting method for better transport phenomenon. The varied concentrations of GuA were induced in the polymer matrix membrane. The prepared membranes M-GuA2–M-GuA10 were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, atomic force microscope and bio-fouling studies. Thermal stability of the membranes was determined by thermogravimetric analysis under nitrogen atmosphere. Dead end nanofiltration was carried out to study the perm- selectivity of all the membranes under varied pressure and concentration of Pb(NO 3 ) 2 . The complexation-NF membrane performances were significantly improved after the addition of GuA in the polymer matrix membrane system. M-GuA8 membrane showed optimum result of permeation flux 8.6 l m −2 h −1 . Rejection of Pb(II) ions was observed to be around 97.6% at pH 9 for all the membranes due to electrostatic interaction between CA and Gum Arabic. Moreover, with the passage of time, the rate of adsorption was also increased up to 15.7 mg g −1 until steady state was attained. Gum Arabic modified CA membranes can open up new possibilities in enhancing the permeability, hydrophilicity and anti-fouling properties.
科研通智能强力驱动
Strongly Powered by AbleSci AI