Review of deep learning algorithms for the automatic detection of intracranial hemorrhages on computed tomography head imaging

医学 算法 催交 人工智能 实施 计算机断层摄影术 机器学习 医学影像学 软件部署 深度学习 计算机科学 放射科 操作系统 工程类 程序设计语言 系统工程
作者
Melissa Yeo,Bahman Tahayori,Hong Kuan Kok,Julian Maingard,Numan Kutaiba,Jeremy Russell,Vincent Thijs,Ashu Jhamb,Ronil V. Chandra,Mark Brooks,Christen D. Barras,Hamed Asadi
出处
期刊:Journal of NeuroInterventional Surgery [BMJ]
卷期号:13 (4): 369-378 被引量:18
标识
DOI:10.1136/neurintsurg-2020-017099
摘要

Artificial intelligence is a rapidly evolving field, with modern technological advances and the growth of electronic health data opening new possibilities in diagnostic radiology. In recent years, the performance of deep learning (DL) algorithms on various medical image tasks have continually improved. DL algorithms have been proposed as a tool to detect various forms of intracranial hemorrhage on non-contrast computed tomography (NCCT) of the head. In subtle, acute cases, the capacity for DL algorithm image interpretation support might improve the diagnostic yield of CT for detection of this time-critical condition, potentially expediting treatment where appropriate and improving patient outcomes. However, there are multiple challenges to DL algorithm implementation, such as the relative scarcity of labeled datasets, the difficulties in developing algorithms capable of volumetric medical image analysis, and the complex practicalities of deployment into clinical practice. This review examines the literature and the approaches taken in the development of DL algorithms for the detection of intracranial hemorrhage on NCCT head studies. Considerations in crafting such algorithms will be discussed, as well as challenges which must be overcome to ensure effective, dependable implementations as automated tools in a clinical setting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小姜完成签到,获得积分10
刚刚
啦啦啦123完成签到 ,获得积分10
2秒前
homer发布了新的文献求助10
2秒前
2秒前
共享精神应助拉长的冰海采纳,获得10
3秒前
辉白完成签到,获得积分10
5秒前
阳光刺眼发布了新的文献求助10
6秒前
qjm完成签到,获得积分20
6秒前
7秒前
8秒前
Bonnie发布了新的文献求助10
9秒前
Akim应助carbon-dots采纳,获得10
10秒前
阿尼亚发布了新的文献求助30
10秒前
阳光刺眼完成签到,获得积分10
14秒前
14秒前
上官若男应助胡强采纳,获得10
15秒前
桐桐应助霹雳Young采纳,获得10
18秒前
19秒前
11应助wing采纳,获得10
20秒前
22秒前
23秒前
光天画戟的把完成签到,获得积分10
23秒前
干冷安发布了新的文献求助10
23秒前
汉堡包应助了了采纳,获得10
23秒前
carbon-dots发布了新的文献求助10
25秒前
科目三应助日不落采纳,获得10
26秒前
27秒前
27秒前
qing_he应助麻了采纳,获得10
28秒前
30秒前
Zorn发布了新的文献求助10
31秒前
31秒前
爆炸boom完成签到 ,获得积分10
32秒前
32秒前
33秒前
NexusExplorer应助无或采纳,获得10
33秒前
33秒前
纯2025留下了新的社区评论
34秒前
机灵笑萍发布了新的文献求助10
35秒前
笑笑丶不爱笑完成签到,获得积分10
35秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138986
求助须知:如何正确求助?哪些是违规求助? 2789907
关于积分的说明 7793124
捐赠科研通 2446296
什么是DOI,文献DOI怎么找? 1301017
科研通“疑难数据库(出版商)”最低求助积分说明 626087
版权声明 601096