清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A generalized artificial intelligence model for estimating the friction angle of clays in evaluating slope stability using a deep neural network and Harris Hawks optimization algorithm

理论(学习稳定性) 非线性系统 算法
作者
Hong Zhang,Hoang Nguyen,Xuan-Nam Bui,Biswajeet Pradhan,Panagiotis G. Asteris,Romulus Costache,Jagannath Aryal
出处
期刊:Engineering With Computers [Springer Science+Business Media]
卷期号:: 1-14 被引量:14
标识
DOI:10.1007/s00366-020-01272-9
摘要

In landslide susceptibility mapping or evaluating slope stability, the shear strength parameters of rocks and soils and their effectiveness are undeniable. However, they have not been studied for all-natural materials, as well as different locations. Therefore, this paper proposes a novel generalized artificial intelligence model for estimating the friction angle of clays from different areas/locations for evaluating slope stability or landslide susceptibility mapping, including the datasets from the UK, New Zealand, Indonesia, Venezuela, USA, Japan, and Italy. The robustness and consistency of the model’s prediction were checked by testing with various datasets having different geological and geomorphological setups. Accordingly, 162 observations from different areas/locations were collected from the locations and regions above for this aim. Subsequently, deep learning techniques were applied to develop the multiple layer perceptron (MLP) neural network model (i.e., DMLP model) with the goal of error reduction of the MLP model. Next, Harris Hawks optimization (HHO) algorithm was applied to boost the optimization of the DMLP model for predicting friction angle of clays aiming to get a better accuracy than those of the DMLP model, called HHO–DMLP model. A DMLP neural network without optimization of the HHO algorithm and two other conventional models (i.e., SVM and RF) were also employed to compare with the proposed HHO–DMLP model. The results showed that the proposed HHO–DMLP model predicted the friction angle of clays better than those of the other models. It can reflect the friction angle of clays with acceptable accuracy from different locations and regions (i.e., MSE = 12.042; RMSE = 3.470; R2 = 0.796; MAPE = 0.182; and VAF = 78.806). The DMLP model without optimization of the HHO algorithm provided slightly lower accuracy (i.e., MSE = 15.151; RMSE = 3.892; R2 = 0.738; MAPE = 0.202; and VAF = 73.431). Besides, two other conventional models (i.e., SVM and RF) provided low reliability, especially over-fitting happened with the RF model, and it was not recommended to be used to predict the friction angle of clays (i.e., RMSE = 6.325 and R2 = 0.377 on the training dataset, but RMSE = 1.669 and R2 = 0.961 on the testing dataset).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小强完成签到 ,获得积分10
3秒前
量子星尘发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
18秒前
川藏客完成签到 ,获得积分10
22秒前
量子星尘发布了新的文献求助10
37秒前
房天川完成签到 ,获得积分10
43秒前
量子星尘发布了新的文献求助10
48秒前
量子星尘发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
wangfaqing942完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
Silence完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
hihi发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
丘比特应助科研通管家采纳,获得10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
4分钟前
爱静静应助mt13采纳,获得100
4分钟前
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
紫熊发布了新的文献求助10
5分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3661079
求助须知:如何正确求助?哪些是违规求助? 3222233
关于积分的说明 9744081
捐赠科研通 2931862
什么是DOI,文献DOI怎么找? 1605234
邀请新用户注册赠送积分活动 757780
科研通“疑难数据库(出版商)”最低求助积分说明 734538