A generalized artificial intelligence model for estimating the friction angle of clays in evaluating slope stability using a deep neural network and Harris Hawks optimization algorithm

理论(学习稳定性) 非线性系统 算法
作者
Hong Zhang,Hoang Nguyen,Xuan-Nam Bui,Biswajeet Pradhan,Panagiotis G. Asteris,Romulus Costache,Jagannath Aryal
出处
期刊:Engineering With Computers [Springer Nature]
卷期号:: 1-14 被引量:14
标识
DOI:10.1007/s00366-020-01272-9
摘要

In landslide susceptibility mapping or evaluating slope stability, the shear strength parameters of rocks and soils and their effectiveness are undeniable. However, they have not been studied for all-natural materials, as well as different locations. Therefore, this paper proposes a novel generalized artificial intelligence model for estimating the friction angle of clays from different areas/locations for evaluating slope stability or landslide susceptibility mapping, including the datasets from the UK, New Zealand, Indonesia, Venezuela, USA, Japan, and Italy. The robustness and consistency of the model’s prediction were checked by testing with various datasets having different geological and geomorphological setups. Accordingly, 162 observations from different areas/locations were collected from the locations and regions above for this aim. Subsequently, deep learning techniques were applied to develop the multiple layer perceptron (MLP) neural network model (i.e., DMLP model) with the goal of error reduction of the MLP model. Next, Harris Hawks optimization (HHO) algorithm was applied to boost the optimization of the DMLP model for predicting friction angle of clays aiming to get a better accuracy than those of the DMLP model, called HHO–DMLP model. A DMLP neural network without optimization of the HHO algorithm and two other conventional models (i.e., SVM and RF) were also employed to compare with the proposed HHO–DMLP model. The results showed that the proposed HHO–DMLP model predicted the friction angle of clays better than those of the other models. It can reflect the friction angle of clays with acceptable accuracy from different locations and regions (i.e., MSE = 12.042; RMSE = 3.470; R2 = 0.796; MAPE = 0.182; and VAF = 78.806). The DMLP model without optimization of the HHO algorithm provided slightly lower accuracy (i.e., MSE = 15.151; RMSE = 3.892; R2 = 0.738; MAPE = 0.202; and VAF = 73.431). Besides, two other conventional models (i.e., SVM and RF) provided low reliability, especially over-fitting happened with the RF model, and it was not recommended to be used to predict the friction angle of clays (i.e., RMSE = 6.325 and R2 = 0.377 on the training dataset, but RMSE = 1.669 and R2 = 0.961 on the testing dataset).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助天际繁星采纳,获得10
刚刚
善良梦竹完成签到 ,获得积分10
刚刚
wlqc完成签到,获得积分10
1秒前
QinQin发布了新的文献求助50
1秒前
饿哭了塞完成签到 ,获得积分10
3秒前
洁净的寒安完成签到,获得积分10
4秒前
乐观翎发布了新的文献求助10
4秒前
4秒前
疯狂的绮山完成签到,获得积分10
5秒前
6秒前
虎虎虎完成签到,获得积分10
7秒前
萧羊青完成签到,获得积分10
7秒前
希望天下0贩的0应助lily88采纳,获得10
8秒前
nuonuomimi完成签到,获得积分10
9秒前
wp4455777完成签到,获得积分10
10秒前
润华完成签到 ,获得积分10
12秒前
smm完成签到 ,获得积分10
13秒前
大牛顿完成签到,获得积分10
14秒前
14秒前
gyrxcu发布了新的文献求助10
15秒前
xyzlancet完成签到,获得积分10
17秒前
乐易天完成签到,获得积分10
17秒前
CodeCraft应助乐观翎采纳,获得10
18秒前
Owen应助漂亮的素采纳,获得10
18秒前
19秒前
高大小土豆完成签到 ,获得积分10
21秒前
gyrxcu完成签到,获得积分10
22秒前
无奈完成签到,获得积分10
22秒前
22秒前
23秒前
大胆的草莓完成签到 ,获得积分10
23秒前
旷意发布了新的文献求助10
23秒前
想自由完成签到,获得积分10
23秒前
看文献的高光谱完成签到,获得积分10
24秒前
遇见飞儿完成签到,获得积分10
24秒前
土狗完成签到,获得积分10
28秒前
ZR发布了新的文献求助10
28秒前
29秒前
希儿世界第一可爱完成签到,获得积分10
31秒前
高晓澍完成签到,获得积分10
34秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139871
求助须知:如何正确求助?哪些是违规求助? 2790774
关于积分的说明 7796588
捐赠科研通 2447179
什么是DOI,文献DOI怎么找? 1301652
科研通“疑难数据库(出版商)”最低求助积分说明 626313
版权声明 601194