泽尼克多项式
波前
波前传感器
微透镜
光学
均方根
自适应光学
计算机科学
变形镜
物理
流离失所(心理学)
人工智能
算法
计算机视觉
镜头(地质)
量子力学
心理学
心理治疗师
作者
Zhiqiang Xu,Shuai Wang,Mengmeng Zhao,Zhao Wang,Lizhi Dong,Xing He,Ping Yang,Bing Xu
出处
期刊:Applied Optics
[Optica Publishing Group]
日期:2020-04-28
卷期号:59 (16): 4768-4768
被引量:16
摘要
In a standard Shack-Hartmann wavefront sensor, the number of effective lenslets is the vital parameter that limits the wavefront restoration accuracy. This paper proposes a wavefront reconstruction algorithm for a Shack-Hartmann wavefront sensor with an insufficient microlens based on an extreme learning machine. The neural network model is used to fit the nonlinear corresponding relationship between the centroid displacement and the Zernike model coefficients under a sparse microlens. Experiments with a 6×6 lenslet array show that the root mean square (RMS) relative error of the proposed method is only 4.36% of the initial value, which is 80.72% lower than the standard modal algorithm.
科研通智能强力驱动
Strongly Powered by AbleSci AI