Sociodemographic determinants of COVID-19 incidence rates in Oman: Geospatial modelling using multiscale geographically weighted regression (MGWR)

协变量 普通最小二乘法 地理 人口学 大流行 地理空间分析 回归分析 入射(几何) 公共卫生 空间分析 统计 人口 2019年冠状病毒病(COVID-19) 环境卫生 回归 医学 地图学 疾病 数学 传染病(医学专业) 社会学 病理 护理部 几何学 遥感
作者
Shawky Mansour,Abdullah Al Kindi,Alkhattab Al-Said,Adham Al-Said,Peter M. Atkinson
出处
期刊:Sustainable Cities and Society [Elsevier]
卷期号:65: 102627-102627 被引量:188
标识
DOI:10.1016/j.scs.2020.102627
摘要

The current COVID-19 pandemic is evolving rapidly into one of the most devastating public health crises in recent history. By mid-July 2020, reported cases exceeded 13 million worldwide, with at least 575,000 deaths and 7.33 million people recovered. In Oman, over 61,200 confirmed cases have been reported with an infection rate of 1.3. Spatial modeling of disease transmission is important to guide the response to the epidemic at the subnational level. Sociodemographic and healthcare factors such as age structure, population density, long-term illness, hospital beds and nurse practitioners can be used to explain and predict the spatial transmission of COVID-19. Therefore, this research aimed to examine whether the relationships between the incidence rates and these covariates vary spatially across Oman. Global Ordinary Least Squares (OLS), spatial lag and spatial error regression models (SLM, SEM), as well as two distinct local regression models (Geographically Weighted Regression (GWR) and multiscale geographically weighted regression MGWR), were applied to explore the spatially non-stationary relationships. As the relationships between these covariates and COVID-19 incidence rates vary geographically, the local models were able to express the non-stationary relationships among variables. Furthermore, among the eleven selected regressors, elderly population aged 65 and above, population density, hospital beds, and diabetes rates were found to be statistically significant determinants of COVID-19 incidence rates. In conclusion, spatial information derived from this modeling provides valuable insights regarding the spatially varying relationship of COVID-19 infection with these possible drivers to help establish preventative measures to reduce the community incidence rate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
skxz完成签到,获得积分10
1秒前
李健的小迷弟应助love迈扣采纳,获得10
2秒前
韩凌完成签到,获得积分10
3秒前
SciGPT应助天降采纳,获得10
4秒前
lily发布了新的文献求助20
4秒前
5秒前
钠离子完成签到,获得积分10
6秒前
6秒前
刘刘刘完成签到 ,获得积分10
8秒前
major完成签到,获得积分10
8秒前
simple阿萨辛完成签到,获得积分10
8秒前
8秒前
9秒前
容荣完成签到,获得积分10
9秒前
半颗橙子完成签到 ,获得积分10
10秒前
俊鱼完成签到,获得积分10
10秒前
小苔藓完成签到 ,获得积分10
10秒前
上官若男应助lai采纳,获得10
10秒前
11秒前
桔子卡卡完成签到,获得积分10
11秒前
moon123完成签到,获得积分10
11秒前
lixiaoya完成签到,获得积分10
12秒前
13秒前
Max发布了新的文献求助10
13秒前
13秒前
14秒前
14秒前
15秒前
打打应助wufel2采纳,获得10
15秒前
瓜子仁发布了新的文献求助30
16秒前
CodeCraft应助南南采纳,获得10
17秒前
18秒前
18秒前
love迈扣发布了新的文献求助10
18秒前
我叫不紧张完成签到,获得积分10
18秒前
汉堡包应助藏獒采纳,获得10
19秒前
wwhhyy完成签到,获得积分20
19秒前
兔子发布了新的文献求助10
20秒前
21秒前
燕知南发布了新的文献求助10
21秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160172
求助须知:如何正确求助?哪些是违规求助? 2811172
关于积分的说明 7891237
捐赠科研通 2470284
什么是DOI,文献DOI怎么找? 1315398
科研通“疑难数据库(出版商)”最低求助积分说明 630828
版权声明 602022