钙钛矿(结构)
材料科学
溶剂
钙钛矿太阳能电池
缩放比例
极性(国际关系)
墨水池
化学工程
能量转换效率
图层(电子)
光电子学
纳米技术
有机化学
化学
几何学
数学
工程类
生物化学
复合材料
细胞
作者
Furkan H. Isikgor,Anand S. Subbiah,Mathan K. Eswaran,Calvyn T. Howells,Aslihan Babayigit,Michele De Bastiani,Emre Yengel,Jiang Liu,Francesco Furlan,George T. Harrison,Shynggys Zhumagali,Jafar I. Khan,Frédéric Laquai,Thomas D. Anthopoulos,Iain McCulloch,Udo Schwingenschlögl,Stefaan De Wolf
出处
期刊:Nano Energy
[Elsevier]
日期:2021-03-01
卷期号:81: 105633-105633
被引量:56
标识
DOI:10.1016/j.nanoen.2020.105633
摘要
Despite impressive power conversion efficiencies (PCEs) reported for lab-scale perovskite solar cells (PSCs), obtaining large-area devices with similar performance remains challenging. Fundamentally, this can largely be attributed to a polarity mismatch between the perovskite-precursor solution and the underlying hydrophobic contact materials, resulting in perovskite films of insufficient quality for scaled devices. Specifically, for p-i-n devices, the commonly used DMF/DMSO co-solvent has a significant polarity mismatch with its underlying hole-transporting layer, PTAA. Here, the role of MAPbI3•solvent adduct interaction with the PTAA surface towards the formation of micro- and nano-scale pinholes is elucidated in detail. Replacing DMSO with NMP in the co-solvent system changes the binding energy profoundly, enabling uniform and dense films over large areas. The PCE of DMF/NMP ink-based devices drops slightly with increasing active device area, from 21.5% (0.1 cm2) to 19.8% (6.8 cm2), in comparison with conventional DMF/DMSO ink. This work opens a pathway towards the scalability of solution-processed perovskite optoelectronic devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI