作者
Minghui Wang,Aiqun Li,Michiko Sekiya,Noam D. Beckmann,Xiuming Quan,Nadine Schrode,Michael B. Fernando,Alex W. Yu,Li Zhu,Jiqing Cao,Liwei Lyu,Emrin Horgusluoglu,Qian Wang,Lei Guo,Yuanshuo Wang,Ryan Neff,Won‐Min Song,Erming Wang,Qi Shen,Xianxiao Zhou,Ming Chen,Seok‐Man Ho,Sezen Vatansever,H. Ümit Kanıskan,Jian Jin,Ming‐Ming Zhou,Kanae Ando,Lap Ho,Paul A. Slesinger,Zhenyu Yue,Jun Zhu,Pavel Katsel,Sam Gandy,Michelle E. Ehrlich,Valentina Fossati,Scott Noggle,Dongming Cai,Vahram Haroutunian,Koichi Iijima,Eric E. Schadt,Kristen Brennand,Bin Zhang
摘要
To identify the molecular mechanisms and novel therapeutic targets of late-onset Alzheimer's Disease (LOAD), we performed an integrative network analysis of multi-omics profiling of four cortical areas across 364 donors with varying cognitive and neuropathological phenotypes. Our analyses revealed thousands of molecular changes and uncovered neuronal gene subnetworks as the most dysregulated in LOAD. ATP6V1A was identified as a key regulator of a top-ranked neuronal subnetwork, and its role in disease-related processes was evaluated through CRISPR-based manipulation in human induced pluripotent stem cell-derived neurons and RNAi-based knockdown in Drosophila models. Neuronal impairment and neurodegeneration caused by ATP6V1A deficit were improved by a repositioned compound, NCH-51. This study provides not only a global landscape but also detailed signaling circuits of complex molecular interactions in key brain regions affected by LOAD, and the resulting network models will serve as a blueprint for developing next-generation therapeutic agents against LOAD.