Alerting on mortality among patients discharged from the emergency department: a machine learning model

医学 急诊科 恶性肿瘤 死亡率 急诊医学 人口统计学的 梯度升压 机器学习 内科学 人口学 随机森林 精神科 社会学 计算机科学
作者
Yiftach Barash,Shelly Soffer,Ehud Grossman,Noam Tau,Vera Sorin,Eyal BenDavid,Avinoah Irony,Eli Konen,Eyal Zimlichman,Eyal Klang
出处
期刊:Postgraduate Medical Journal [BMJ]
被引量:2
标识
DOI:10.1136/postgradmedj-2020-138899
摘要

Physicians continuously make tough decisions when discharging patients. Alerting on poor outcomes may help in this decision. This study evaluates a machine learning model for predicting 30-day mortality in emergency department (ED) discharged patients.We retrospectively analysed visits of adult patients discharged from a single ED (1/2014-12/2018). Data included demographics, evaluation and treatment in the ED, and discharge diagnosis. The data comprised of both structured and free-text fields. A gradient boosting model was trained to predict mortality within 30 days of release from the ED. The model was trained on data from the years 2014-2017 and validated on data from the year 2018. In order to reduce potential end-of-life bias, a subgroup analysis was performed for non-oncological patients.Overall, 363 635 ED visits of discharged patients were analysed. The 30-day mortality rate was 0.8%. A majority of the mortality cases (65.3%) had a known oncological disease. The model yielded an area under the curve (AUC) of 0.97 (95% CI 0.96 to 0.97) for predicting 30-day mortality. For a sensitivity of 84% (95% CI 0.81 to 0.86), this model had a false positive rate of 1:20. For patients without a known malignancy, the model yielded an AUC of 0.94 (95% CI 0.92 to 0.95).Although not frequent, patients may die following ED discharge. Machine learning-based tools may help ED physicians identify patients at risk. An optimised decision for hospitalisation or palliative management may improve patient care and system resource allocation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Verseau发布了新的文献求助10
1秒前
1秒前
王颖朝完成签到,获得积分20
3秒前
心灵美书瑶完成签到,获得积分10
3秒前
3秒前
5秒前
科研通AI2S应助科研通管家采纳,获得30
5秒前
搜集达人应助科研通管家采纳,获得10
5秒前
5秒前
科研乞丐应助科研通管家采纳,获得20
5秒前
传奇3应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
Mic应助科研通管家采纳,获得10
5秒前
讲座梅郎完成签到,获得积分10
5秒前
SciGPT应助科研通管家采纳,获得10
5秒前
鳗鱼鞋垫发布了新的文献求助10
6秒前
艺二叁完成签到,获得积分10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
酷波er应助科研通管家采纳,获得10
6秒前
丹丹丹应助科研通管家采纳,获得10
6秒前
完美世界应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
小杭76应助科研通管家采纳,获得10
6秒前
Orange应助科研通管家采纳,获得10
6秒前
wanci应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
英姑应助科研通管家采纳,获得10
7秒前
Mic应助科研通管家采纳,获得10
7秒前
ding应助科研通管家采纳,获得10
7秒前
小奕应助科研通管家采纳,获得50
7秒前
净禅完成签到 ,获得积分10
7秒前
9秒前
纸飞机完成签到 ,获得积分10
9秒前
CC发布了新的文献求助10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5416974
求助须知:如何正确求助?哪些是违规求助? 4533038
关于积分的说明 14138072
捐赠科研通 4449148
什么是DOI,文献DOI怎么找? 2440600
邀请新用户注册赠送积分活动 1432430
关于科研通互助平台的介绍 1409858