Alerting on mortality among patients discharged from the emergency department: a machine learning model

医学 急诊科 恶性肿瘤 死亡率 急诊医学 人口统计学的 梯度升压 机器学习 内科学 人口学 计算机科学 精神科 社会学 随机森林
作者
Yiftach Barash,Shelly Soffer,Ehud Grossman,Noam Tau,Vera Sorin,Eyal BenDavid,Avinoah Irony,Eli Konen,Eyal Zimlichman,Eyal Klang
出处
期刊:Postgraduate Medical Journal [BMJ]
被引量:2
标识
DOI:10.1136/postgradmedj-2020-138899
摘要

Physicians continuously make tough decisions when discharging patients. Alerting on poor outcomes may help in this decision. This study evaluates a machine learning model for predicting 30-day mortality in emergency department (ED) discharged patients.We retrospectively analysed visits of adult patients discharged from a single ED (1/2014-12/2018). Data included demographics, evaluation and treatment in the ED, and discharge diagnosis. The data comprised of both structured and free-text fields. A gradient boosting model was trained to predict mortality within 30 days of release from the ED. The model was trained on data from the years 2014-2017 and validated on data from the year 2018. In order to reduce potential end-of-life bias, a subgroup analysis was performed for non-oncological patients.Overall, 363 635 ED visits of discharged patients were analysed. The 30-day mortality rate was 0.8%. A majority of the mortality cases (65.3%) had a known oncological disease. The model yielded an area under the curve (AUC) of 0.97 (95% CI 0.96 to 0.97) for predicting 30-day mortality. For a sensitivity of 84% (95% CI 0.81 to 0.86), this model had a false positive rate of 1:20. For patients without a known malignancy, the model yielded an AUC of 0.94 (95% CI 0.92 to 0.95).Although not frequent, patients may die following ED discharge. Machine learning-based tools may help ED physicians identify patients at risk. An optimised decision for hospitalisation or palliative management may improve patient care and system resource allocation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
大鱼完成签到,获得积分10
2秒前
zzz发布了新的文献求助10
2秒前
脑洞疼应助谭你脑瓜崩采纳,获得10
4秒前
云云完成签到 ,获得积分10
6秒前
大鱼发布了新的文献求助10
7秒前
8秒前
9秒前
斯文败类应助杨夕采纳,获得10
9秒前
称心豁完成签到,获得积分10
10秒前
孤独的匕发布了新的文献求助10
10秒前
XL应助elve采纳,获得10
11秒前
12秒前
jjjjjjjing发布了新的文献求助10
12秒前
Jm完成签到,获得积分10
13秒前
浩浩浩完成签到,获得积分10
13秒前
14秒前
贲半梦发布了新的文献求助10
14秒前
科研小白完成签到,获得积分10
15秒前
YQ完成签到,获得积分10
15秒前
火星上香菇关注了科研通微信公众号
18秒前
18秒前
19秒前
TLB完成签到,获得积分10
20秒前
大模型应助KKK采纳,获得50
21秒前
xiao柒柒柒完成签到,获得积分10
21秒前
Owen应助小刘采纳,获得10
21秒前
22秒前
杜林发布了新的文献求助10
22秒前
23秒前
23秒前
yuanle完成签到,获得积分10
23秒前
灵巧的馒头完成签到,获得积分10
24秒前
kk完成签到,获得积分10
24秒前
jjjjjjjing完成签到,获得积分20
24秒前
25秒前
25秒前
26秒前
27秒前
hesongheng完成签到,获得积分10
28秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137977
求助须知:如何正确求助?哪些是违规求助? 2788926
关于积分的说明 7789136
捐赠科研通 2445326
什么是DOI,文献DOI怎么找? 1300288
科研通“疑难数据库(出版商)”最低求助积分说明 625878
版权声明 601046