Radiomics in stratification of pancreatic cystic lesions: Machine learning in action

无线电技术 胰腺癌 医学 卷积神经网络 恶性肿瘤 人工智能 机器学习 计算机科学 内科学 癌症 病理
作者
Vipin Dalal,Joseph Carmicheal,Amaninder Dhaliwal,Maneesh Jain,Sukhwinder Kaur,Surinder K. Batra
出处
期刊:Cancer Letters [Elsevier]
卷期号:469: 228-237 被引量:76
标识
DOI:10.1016/j.canlet.2019.10.023
摘要

Pancreatic cystic lesions (PCLs) are well-known precursors of pancreatic cancer. Their diagnosis can be challenging as their behavior varies from benign to malignant disease. Precise and timely management of malignant pancreatic cysts might prevent transformation to pancreatic cancer. However, the current consensus guidelines, which rely on standard imaging features to predict cyst malignancy potential, are conflicting and unclear. This has led to an increased interest in radiomics, a high-throughput extraction of comprehensible data from standard of care images. Radiomics can be used as a diagnostic and prognostic tool in personalized medicine. It utilizes quantitative image analysis to extract features in conjunction with machine learning and artificial intelligence (AI) methods like support vector machines, random forest, and convolutional neural network for feature selection and classification. Selected features can then serve as imaging biomarkers to predict high-risk PCLs. Radiomics studies conducted heretofore on PCLs have shown promising results. This cost-effective approach would help us to differentiate benign PCLs from malignant ones and potentially guide clinical decision-making leading to better utilization of healthcare resources. In this review, we discuss the process of radiomics, its myriad applications such as diagnosis, prognosis, and prediction of therapy response. We also discuss the outcomes of studies involving radiomic analysis of PCLs and pancreatic cancer, and challenges associated with this novel field along with possible solutions. Although these studies highlight the potential benefit of radiomics in the prevention and optimal treatment of pancreatic cancer, further studies are warranted before incorporating radiomics into the clinical decision support system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
希望天下0贩的0应助与我cz采纳,获得10
1秒前
杨天天完成签到,获得积分10
2秒前
小马甲应助123采纳,获得10
3秒前
谦让的凤灵完成签到,获得积分10
3秒前
4秒前
皮皮发布了新的文献求助30
4秒前
4秒前
weiwei发布了新的文献求助10
7秒前
weiwei发布了新的文献求助10
8秒前
星辰大海应助科研体育生采纳,获得10
8秒前
虚幻的白秋完成签到,获得积分10
9秒前
panda发布了新的文献求助10
9秒前
XTM完成签到,获得积分10
10秒前
lgh发布了新的文献求助10
11秒前
益笙鸿老板完成签到 ,获得积分10
11秒前
11秒前
11秒前
CodeCraft应助贱小贱采纳,获得10
12秒前
华仔应助获获采纳,获得10
12秒前
顾矜应助lichun410932采纳,获得10
12秒前
称心的晓筠完成签到,获得积分20
13秒前
15秒前
16秒前
小刺猬完成签到,获得积分20
17秒前
乐乐应助禹无极采纳,获得80
18秒前
杨科研完成签到,获得积分10
18秒前
wen发布了新的文献求助10
18秒前
jiangxinzhi完成签到 ,获得积分10
19秒前
努力完成签到,获得积分20
20秒前
20秒前
weiwei完成签到,获得积分20
23秒前
24秒前
JamesPei应助zmgdxph采纳,获得10
25秒前
情怀应助lhl采纳,获得30
25秒前
云云邶完成签到,获得积分10
26秒前
Cyrus2022完成签到,获得积分10
26秒前
27秒前
香蕉绿柳发布了新的文献求助100
27秒前
HonglinGao完成签到,获得积分20
28秒前
小鱼头发布了新的文献求助30
29秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143769
求助须知:如何正确求助?哪些是违规求助? 2795306
关于积分的说明 7814169
捐赠科研通 2451255
什么是DOI,文献DOI怎么找? 1304400
科研通“疑难数据库(出版商)”最低求助积分说明 627221
版权声明 601413