Multi objective optimization of a micro-channel heat sink through genetic algorithm

雷诺数 努塞尔数 机械 层流 散热片 传热 冷却液 多目标优化 频道(广播) 计算机科学 遗传算法 材料科学 数学 数学优化 物理 热力学 湍流 电信
作者
Alperen Yıldızeli,Sertaç Çadırcı
出处
期刊:International Journal of Heat and Mass Transfer [Elsevier]
卷期号:146: 118847-118847 被引量:91
标识
DOI:10.1016/j.ijheatmasstransfer.2019.118847
摘要

In this study, fluid flow and conjugate heat transfer in a micro-channel heat sink (MCHS) is simulated with ANSYS-Fluent and optimized with multi objective genetic algorithm known as elitist Non-Dominated Sorting Genetic Algorithm (NSGA-II) coded in MATLAB. Single phase, steady and fully developed liquid flow in the range of the inlet Reynolds number 500–1000 through a 3D micro-channel is solved by the laminar flow solver. The coolant fluid is considered as deionized water with dynamic viscosity depending on temperature. The geometric variables (channel width and height) of the micro-channel related to the channel’s cross section and the inlet Reynolds number related to the flow rate are selected as design variables for the optimization. Two normalized objective functions of the Nusselt number and pumping power are chosen to assess the hydrodynamic and thermal performances of the MCHS. The optimization is performed for 20 generations with a number of population of 30. Optimal Pareto Front representing the trade-off between the objective functions is obtained, which provides useful results for the design of MCHS. The final generation of the optimization process reveals that in most of the design variable sets, the design points are identified as uniform distribution for the inlet Reynolds number within the limits and 0.29 mm for the micro-channel’s width. However, the micro-channel’s height was suggested in the range of 0.50–0.67 mm in most optimum cases.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助帆帆帆采纳,获得10
刚刚
量子星尘发布了新的文献求助10
1秒前
2秒前
3秒前
星辰大海应助紧张的毛衣采纳,获得10
4秒前
碧萱发布了新的文献求助10
5秒前
CherishLars完成签到,获得积分10
7秒前
宋子涵完成签到 ,获得积分10
8秒前
renmeitao66_3完成签到,获得积分10
8秒前
衡山后学祝晓钰完成签到,获得积分10
10秒前
悠然地八音完成签到,获得积分10
10秒前
zzz完成签到 ,获得积分10
11秒前
11秒前
小蘑菇应助Jyouang采纳,获得10
11秒前
13秒前
13秒前
13秒前
hyd1640完成签到,获得积分10
14秒前
路不迷发布了新的文献求助10
17秒前
我是老大应助sakura采纳,获得10
17秒前
浮游应助璐璐采纳,获得10
18秒前
明亮的幻竹完成签到,获得积分10
18秒前
彪壮的鹤发布了新的文献求助10
18秒前
18秒前
19秒前
Cling关注了科研通微信公众号
20秒前
俏皮诺言发布了新的文献求助10
20秒前
TATA完成签到,获得积分20
20秒前
21秒前
情怀应助包容寻芹采纳,获得10
21秒前
ahoshuo完成签到,获得积分10
21秒前
22秒前
今后应助任我行采纳,获得10
22秒前
22秒前
古琴残梦发布了新的文献求助10
22秒前
Juid应助newsl采纳,获得40
23秒前
CodeCraft应助路不迷采纳,获得10
25秒前
海潮飞翔发布了新的文献求助10
25秒前
26秒前
26秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620667
求助须知:如何正确求助?哪些是违规求助? 4705247
关于积分的说明 14930934
捐赠科研通 4762530
什么是DOI,文献DOI怎么找? 2551078
邀请新用户注册赠送积分活动 1513735
关于科研通互助平台的介绍 1474655