量化(信号处理)
计算机科学
边缘设备
计算
硬件加速
人工神经网络
设计空间探索
推论
延迟(音频)
计算机硬件
计算机工程
强化学习
硬件体系结构
并行计算
现场可编程门阵列
云计算
嵌入式系统
算法
人工智能
程序设计语言
操作系统
电信
软件
作者
Kuan Wen Wang,Zhijian Liu,Yu-Jun Lin,Fan Zhang,Song Han
出处
期刊:Cornell University - arXiv
日期:2019-06-15
被引量:435
标识
DOI:10.1109/cvpr.2019.00881
摘要
Model quantization is a widely used technique to compress and accelerate deep neural network (DNN) inference. Emergent DNN hardware accelerators begin to support mixed precision (1-8 bits) to further improve the computation efficiency, which raises a great challenge to find the optimal bitwidth for each layer: it requires domain experts to explore the vast design space trading off among accuracy, latency, energy, and model size, which is both time-consuming and sub-optimal. Conventional quantization algorithm ignores the different hardware architectures and quantizes all the layers in a uniform way. In this paper, we introduce the Hardware-Aware Automated Quantization (HAQ) framework which leverages the reinforcement learning to automatically determine the quantization policy, and we take the hardware accelerator's feedback in the design loop. Rather than relying on proxy signals such as FLOPs and model size, we employ a hardware simulator to generate direct feedback signals (latency and energy) to the RL agent. Compared with conventional methods, our framework is fully automated and can specialize the quantization policy for different neural network architectures and hardware architectures. Our framework effectively reduced the latency by 1.4-1.95x and the energy consumption by 1.9x with negligible loss of accuracy compared with the fixed bitwidth (8 bits) quantization. Our framework reveals that the optimal policies on different hardware architectures (i.e., edge and cloud architectures) under different resource constraints (i.e., latency, energy and model size) are drastically different. We interpreted the implication of different quantization policies, which offer insights for both neural network architecture design and hardware architecture design.
科研通智能强力驱动
Strongly Powered by AbleSci AI