Accurate Markov Boundary Discovery for Causal Feature Selection

特征选择 水准点(测量) 计算机科学 人工智能 机器学习 条件独立性 特征(语言学) 算法 数据挖掘 大地测量学 语言学 哲学 地理
作者
Xingyu Wu,Bingbing Jiang,Kui Yu,Chunyan Miao,Huanhuan Chen
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:50 (12): 4983-4996 被引量:71
标识
DOI:10.1109/tcyb.2019.2940509
摘要

Causal feature selection has achieved much attention in recent years, which discovers a Markov boundary (MB) of the class attribute. The MB of the class attribute implies local causal relations between the class attribute and the features, thus leading to more interpretable and robust prediction models than the features selected by the traditional feature selection algorithms. Many causal feature selection methods have been proposed, and almost all of them employ conditional independence (CI) tests to identify MBs. However, many datasets from real-world applications may suffer from incorrect CI tests due to noise or small-sized samples, resulting in lower MB discovery accuracy for these existing algorithms. To tackle this issue, in this article, we first introduce a new concept of PCMasking to explain a type of incorrect CI tests in the MB discovery, then propose a cross-check and complement MB discovery (CCMB) algorithm to repair this type of incorrect CI tests for accurate MB discovery. To improve the efficiency of CCMB, we further design a pipeline machine-based CCMB (PM-CCMB) algorithm. Using benchmark Bayesian network datasets, the experiments demonstrate that both CCMB and PM-CCMB achieve significant improvements on the MB discovery accuracy compared with the existing methods, and PM-CCMB further improves the computational efficiency. The empirical study in the real-world datasets validates the effectiveness of CCMB and PM-CCMB against the state-of-the-art causal and traditional feature selection algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助Rebekah采纳,获得10
1秒前
AstonMAO_完成签到,获得积分10
1秒前
stws发布了新的文献求助10
1秒前
2秒前
2秒前
云九卿完成签到,获得积分10
2秒前
科研通AI6应助王赟晖采纳,获得10
2秒前
大力半鬼完成签到,获得积分10
3秒前
临兵者完成签到 ,获得积分10
3秒前
yoyo发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
4秒前
view发布了新的文献求助10
4秒前
灰灰发布了新的文献求助10
5秒前
LRR完成签到 ,获得积分10
5秒前
5秒前
6秒前
liu发布了新的文献求助10
6秒前
勤恳的一斩完成签到,获得积分10
6秒前
6秒前
duts发布了新的文献求助10
7秒前
临兵者关注了科研通微信公众号
7秒前
Serenade发布了新的文献求助10
7秒前
7秒前
7秒前
薇薇快跑完成签到,获得积分20
7秒前
无所谓的啦完成签到,获得积分10
7秒前
8秒前
8秒前
机灵人雄发布了新的文献求助10
9秒前
Mohr关注了科研通微信公众号
9秒前
斯文败类应助wu采纳,获得10
9秒前
赘婿应助钻石棋采纳,获得10
9秒前
9秒前
10秒前
天天快乐应助666ll采纳,获得10
10秒前
慕青应助曾曾采纳,获得10
10秒前
所所应助涛1采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5258146
求助须知:如何正确求助?哪些是违规求助? 4420085
关于积分的说明 13759156
捐赠科研通 4293598
什么是DOI,文献DOI怎么找? 2356080
邀请新用户注册赠送积分活动 1352449
关于科研通互助平台的介绍 1313237