Accurate Markov Boundary Discovery for Causal Feature Selection

特征选择 水准点(测量) 计算机科学 人工智能 机器学习 条件独立性 特征(语言学) 算法 数据挖掘 大地测量学 语言学 哲学 地理
作者
Xingyu Wu,Bingbing Jiang,Kui Yu,Chunyan Miao,Huanhuan Chen
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:50 (12): 4983-4996 被引量:71
标识
DOI:10.1109/tcyb.2019.2940509
摘要

Causal feature selection has achieved much attention in recent years, which discovers a Markov boundary (MB) of the class attribute. The MB of the class attribute implies local causal relations between the class attribute and the features, thus leading to more interpretable and robust prediction models than the features selected by the traditional feature selection algorithms. Many causal feature selection methods have been proposed, and almost all of them employ conditional independence (CI) tests to identify MBs. However, many datasets from real-world applications may suffer from incorrect CI tests due to noise or small-sized samples, resulting in lower MB discovery accuracy for these existing algorithms. To tackle this issue, in this article, we first introduce a new concept of PCMasking to explain a type of incorrect CI tests in the MB discovery, then propose a cross-check and complement MB discovery (CCMB) algorithm to repair this type of incorrect CI tests for accurate MB discovery. To improve the efficiency of CCMB, we further design a pipeline machine-based CCMB (PM-CCMB) algorithm. Using benchmark Bayesian network datasets, the experiments demonstrate that both CCMB and PM-CCMB achieve significant improvements on the MB discovery accuracy compared with the existing methods, and PM-CCMB further improves the computational efficiency. The empirical study in the real-world datasets validates the effectiveness of CCMB and PM-CCMB against the state-of-the-art causal and traditional feature selection algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
活泼灵枫发布了新的文献求助10
刚刚
grandtough应助不上课不行采纳,获得200
1秒前
1秒前
在水一方应助不想卷科研采纳,获得10
1秒前
自由的傲易完成签到,获得积分10
2秒前
大胆如花发布了新的文献求助10
2秒前
暖暖发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
liyiliyi117发布了新的文献求助10
3秒前
3秒前
SOESAN完成签到,获得积分10
3秒前
飞稿发布了新的文献求助10
3秒前
4秒前
白昼画家发布了新的文献求助10
4秒前
欢喜孤风发布了新的文献求助10
4秒前
CodeCraft应助优雅的WAN采纳,获得30
4秒前
4秒前
FashionBoy应助震动的梦山采纳,获得10
5秒前
蓝梦一刀完成签到,获得积分10
5秒前
方圆几里完成签到,获得积分10
5秒前
5秒前
5秒前
ding应助迅速冰岚采纳,获得10
5秒前
5秒前
朝花夕拾发布了新的文献求助10
6秒前
6秒前
Yu完成签到 ,获得积分10
6秒前
6秒前
萧水白应助王定伟采纳,获得10
6秒前
淡定露完成签到,获得积分10
7秒前
8秒前
8秒前
布布发布了新的文献求助10
8秒前
9秒前
123完成签到,获得积分20
9秒前
Murray发布了新的文献求助10
9秒前
可爱的函函应助陌鸢采纳,获得10
9秒前
10秒前
10秒前
领导范儿应助Harold采纳,获得10
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951800
求助须知:如何正确求助?哪些是违规求助? 3497233
关于积分的说明 11086336
捐赠科研通 3227767
什么是DOI,文献DOI怎么找? 1784520
邀请新用户注册赠送积分活动 868692
科研通“疑难数据库(出版商)”最低求助积分说明 801163