Accurate Markov Boundary Discovery for Causal Feature Selection

特征选择 水准点(测量) 计算机科学 人工智能 机器学习 条件独立性 特征(语言学) 算法 数据挖掘 大地测量学 语言学 哲学 地理
作者
Xingyu Wu,Bingbing Jiang,Kui Yu,Chunyan Miao,Huanhuan Chen
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:50 (12): 4983-4996 被引量:71
标识
DOI:10.1109/tcyb.2019.2940509
摘要

Causal feature selection has achieved much attention in recent years, which discovers a Markov boundary (MB) of the class attribute. The MB of the class attribute implies local causal relations between the class attribute and the features, thus leading to more interpretable and robust prediction models than the features selected by the traditional feature selection algorithms. Many causal feature selection methods have been proposed, and almost all of them employ conditional independence (CI) tests to identify MBs. However, many datasets from real-world applications may suffer from incorrect CI tests due to noise or small-sized samples, resulting in lower MB discovery accuracy for these existing algorithms. To tackle this issue, in this article, we first introduce a new concept of PCMasking to explain a type of incorrect CI tests in the MB discovery, then propose a cross-check and complement MB discovery (CCMB) algorithm to repair this type of incorrect CI tests for accurate MB discovery. To improve the efficiency of CCMB, we further design a pipeline machine-based CCMB (PM-CCMB) algorithm. Using benchmark Bayesian network datasets, the experiments demonstrate that both CCMB and PM-CCMB achieve significant improvements on the MB discovery accuracy compared with the existing methods, and PM-CCMB further improves the computational efficiency. The empirical study in the real-world datasets validates the effectiveness of CCMB and PM-CCMB against the state-of-the-art causal and traditional feature selection algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小番茄yuyu完成签到,获得积分20
2秒前
2秒前
3秒前
3秒前
3秒前
向太阳奔跑hx完成签到,获得积分10
3秒前
ly发布了新的文献求助10
3秒前
rcrc应助wyy采纳,获得10
4秒前
4秒前
4秒前
5秒前
5秒前
飞飞发布了新的文献求助10
5秒前
6秒前
完美世界应助卖萌的秋田采纳,获得10
6秒前
沉舟完成签到,获得积分10
6秒前
中央戏精学院完成签到,获得积分10
7秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
MOMOTG发布了新的文献求助10
8秒前
8秒前
深情安青应助王慧颖采纳,获得10
8秒前
8秒前
qwe完成签到,获得积分10
8秒前
小番茄yuyu发布了新的文献求助10
8秒前
wonder发布了新的文献求助10
9秒前
9秒前
Charon发布了新的文献求助10
9秒前
9秒前
zhanghan发布了新的文献求助10
9秒前
小黎发布了新的文献求助10
9秒前
9秒前
10秒前
77发布了新的文献求助10
10秒前
赘婿应助爱搬玉米采纳,获得10
10秒前
带头大哥应助拼搏的黑夜采纳,获得10
11秒前
12秒前
Megan完成签到,获得积分10
12秒前
内向灵凡发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5760390
求助须知:如何正确求助?哪些是违规求助? 5524729
关于积分的说明 15397532
捐赠科研通 4897330
什么是DOI,文献DOI怎么找? 2634099
邀请新用户注册赠送积分活动 1582136
关于科研通互助平台的介绍 1537609