BAMB

特征选择 水准点(测量) 计算机科学 特征(语言学) 假阳性悖论 选择(遗传算法) 数据挖掘 人工智能 机器学习 语言学 哲学 大地测量学 地理
作者
Zhaolong Ling,Kui Yu,Hao Wang,Lin Liu,Wei Ding,Xindong Wu
出处
期刊:ACM Transactions on Intelligent Systems and Technology [Association for Computing Machinery]
卷期号:10 (5): 1-25 被引量:50
标识
DOI:10.1145/3335676
摘要

The discovery of Markov blanket (MB) for feature selection has attracted much attention in recent years, since the MB of the class attribute is the optimal feature subset for feature selection. However, almost all existing MB discovery algorithms focus on either improving computational efficiency or boosting learning accuracy, instead of both. In this article, we propose a novel MB discovery algorithm for balancing efficiency and accuracy, called <underline>BA</underline>lanced <underline>M</underline>arkov <underline>B</underline>lanket (BAMB) discovery. To achieve this goal, given a class attribute of interest, BAMB finds candidate PC (parents and children) and spouses and removes false positives from the candidate MB set in one go. Specifically, once a feature is successfully added to the current PC set, BAMB finds the spouses with regard to this feature, then uses the updated PC and the spouse set to remove false positives from the current MB set. This makes the PC and spouses of the target as small as possible and thus achieves a trade-off between computational efficiency and learning accuracy. In the experiments, we first compare BAMB with 8 state-of-the-art MB discovery algorithms on 7 benchmark Bayesian networks, then we use 10 real-world datasets and compare BAMB with 12 feature selection algorithms, including 8 state-of-the-art MB discovery algorithms and 4 other well-established feature selection methods. On prediction accuracy, BAMB outperforms 12 feature selection algorithms compared. On computational efficiency, BAMB is close to the IAMB algorithm while it is much faster than the remaining seven MB discovery algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助Ttimer采纳,获得30
1秒前
永远完成签到,获得积分10
1秒前
笑而不语完成签到 ,获得积分10
5秒前
量子星尘发布了新的文献求助30
8秒前
13秒前
健康的机器猫完成签到 ,获得积分10
20秒前
ccc完成签到 ,获得积分10
21秒前
zzm完成签到 ,获得积分10
23秒前
李金奥完成签到 ,获得积分10
24秒前
量子星尘发布了新的文献求助10
25秒前
所所应助Marshall采纳,获得10
30秒前
30秒前
loren313完成签到,获得积分0
33秒前
林好人完成签到 ,获得积分10
33秒前
36秒前
39秒前
陈老师Chenglish完成签到 ,获得积分10
39秒前
量子星尘发布了新的文献求助50
39秒前
lmy完成签到 ,获得积分10
40秒前
杨明智完成签到 ,获得积分10
40秒前
genau000完成签到 ,获得积分10
41秒前
花生油炒花生米完成签到,获得积分10
42秒前
Marshall发布了新的文献求助10
42秒前
11完成签到 ,获得积分10
48秒前
52秒前
52秒前
52秒前
52秒前
52秒前
53秒前
53秒前
53秒前
53秒前
充电宝应助科研通管家采纳,获得10
53秒前
53秒前
Akim应助科研通管家采纳,获得10
53秒前
科研通AI2S应助科研通管家采纳,获得10
53秒前
量子星尘发布了新的文献求助10
53秒前
huiluowork完成签到 ,获得积分10
1分钟前
SUNNYONE完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5789243
求助须知:如何正确求助?哪些是违规求助? 5717468
关于积分的说明 15474379
捐赠科研通 4917139
什么是DOI,文献DOI怎么找? 2646791
邀请新用户注册赠送积分活动 1594451
关于科研通互助平台的介绍 1548923