BAMB

特征选择 水准点(测量) 计算机科学 特征(语言学) 假阳性悖论 选择(遗传算法) 数据挖掘 人工智能 机器学习 大地测量学 语言学 哲学 地理
作者
Zhaolong Ling,Kui Yu,Hao Wang,Lin Liu,Wei Ding,Xindong Wu
出处
期刊:ACM Transactions on Intelligent Systems and Technology [Association for Computing Machinery]
卷期号:10 (5): 1-25 被引量:50
标识
DOI:10.1145/3335676
摘要

The discovery of Markov blanket (MB) for feature selection has attracted much attention in recent years, since the MB of the class attribute is the optimal feature subset for feature selection. However, almost all existing MB discovery algorithms focus on either improving computational efficiency or boosting learning accuracy, instead of both. In this article, we propose a novel MB discovery algorithm for balancing efficiency and accuracy, called <underline>BA</underline>lanced <underline>M</underline>arkov <underline>B</underline>lanket (BAMB) discovery. To achieve this goal, given a class attribute of interest, BAMB finds candidate PC (parents and children) and spouses and removes false positives from the candidate MB set in one go. Specifically, once a feature is successfully added to the current PC set, BAMB finds the spouses with regard to this feature, then uses the updated PC and the spouse set to remove false positives from the current MB set. This makes the PC and spouses of the target as small as possible and thus achieves a trade-off between computational efficiency and learning accuracy. In the experiments, we first compare BAMB with 8 state-of-the-art MB discovery algorithms on 7 benchmark Bayesian networks, then we use 10 real-world datasets and compare BAMB with 12 feature selection algorithms, including 8 state-of-the-art MB discovery algorithms and 4 other well-established feature selection methods. On prediction accuracy, BAMB outperforms 12 feature selection algorithms compared. On computational efficiency, BAMB is close to the IAMB algorithm while it is much faster than the remaining seven MB discovery algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
新晋学术小生完成签到 ,获得积分10
1秒前
xixixi发布了新的文献求助10
1秒前
科研通AI2S应助laissez_fairy采纳,获得10
2秒前
2秒前
bfbdfbdf完成签到,获得积分10
2秒前
2秒前
mjc完成签到 ,获得积分10
2秒前
dandany完成签到,获得积分10
3秒前
隐形曼青应助坦率岱周采纳,获得10
3秒前
Owen应助周雨婷采纳,获得10
3秒前
somin应助七七采纳,获得10
4秒前
4秒前
科研通AI2S应助香蕉采纳,获得10
4秒前
夏天完成签到,获得积分10
4秒前
完美如花发布了新的文献求助10
5秒前
哈哈发布了新的文献求助10
5秒前
无限莫言发布了新的文献求助10
5秒前
5秒前
谨慎采白完成签到 ,获得积分10
5秒前
13201099463完成签到,获得积分10
5秒前
5秒前
Ava应助kou采纳,获得10
6秒前
冷傲藏鸟发布了新的文献求助10
6秒前
囿于一隅完成签到,获得积分10
6秒前
毛毛虫发布了新的文献求助10
6秒前
8秒前
8秒前
Ocean发布了新的文献求助10
8秒前
re6irth完成签到,获得积分10
9秒前
wanci发布了新的文献求助10
10秒前
eee完成签到,获得积分10
10秒前
木今发布了新的文献求助10
10秒前
手残症完成签到,获得积分10
10秒前
10秒前
七星嘿咻完成签到,获得积分10
10秒前
独摇之完成签到,获得积分10
11秒前
11秒前
正直白梅发布了新的文献求助10
11秒前
11秒前
qwepirt完成签到,获得积分10
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953878
求助须知:如何正确求助?哪些是违规求助? 3499920
关于积分的说明 11097238
捐赠科研通 3230331
什么是DOI,文献DOI怎么找? 1785920
邀请新用户注册赠送积分活动 869697
科研通“疑难数据库(出版商)”最低求助积分说明 801572