A Hybrid Machine Learning Method for the De-identification of Un-Structured Narrative Clinical Text in Multi-center Chinese Electronic Medical Records Data

电子病历 人工智能 病历 前提 支持向量机 机器学习 中心(范畴论) 计算机科学 鉴定(生物学) 自然语言处理 情报检索 医学 化学 哲学 放射科 互联网隐私 语言学 植物 生物 结晶学
作者
Meng Jin,Kai Zhang,Yunhaonan Yang,Shuanglian Xie,Kai Song,Yonghua Hu,Xiaoyuan Bao
标识
DOI:10.1109/icbk.2019.00023
摘要

The premise of the full use of unstructured electronic medical records is to maintain the fully protection of a patient's information privacy. Presently, in prior of processing the electronic medical record date, identification and removing of relevant information which can be used to identify a patient is a research hotspot nowadays. There are very few methods in de-identification of Chinese electronic medical records and their cross-center performance is poor. Therefore we develop a de-identification method which is a mixture of rule-based methods and machine learning methods. The method was tested on 700 electronic medical records from six hospitals. Five-fold cross test was used to evaluate the results of c5.0, Random Forest, SVM and XGBOOST. Leave-one-out test was used to evaluate CRF. And the F1 Measure of machine learning reached 91.18% in PHI_Names, 98.21% in PHI_MEDICALID, 95.74% in PHI_OTHERNFC, 97.14% in PHI_GEO, 89.19% in PHI_DATES, and 91.49% in PHI_TEL. And the F1 Measure of rule-based methods reached 93.00% in PHI_Names, 97.00% in PHI_MEDICALID, 97.00% in PHI_OTHERNFC, 97.00% in PHI_GEO, 96.00% in PHI_DATES, and 89.00% in PHI_TEL.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
朴实的虔完成签到 ,获得积分10
刚刚
刚刚
Orange应助儒雅致远采纳,获得10
刚刚
咿呀喂完成签到,获得积分10
1秒前
Jack完成签到,获得积分10
1秒前
隐形曼青应助红火采纳,获得10
1秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
喏晨发布了新的文献求助10
3秒前
3秒前
懵懂的书本完成签到,获得积分20
4秒前
pianjian发布了新的文献求助10
6秒前
7秒前
立军完成签到,获得积分10
7秒前
风偏偏发布了新的文献求助10
7秒前
8秒前
分析法FXF应助Jack采纳,获得10
10秒前
11秒前
小蘑菇应助Gumiano采纳,获得10
11秒前
11秒前
wu完成签到,获得积分10
11秒前
充电宝应助蜡笔小猪采纳,获得10
11秒前
儒雅致远完成签到,获得积分10
12秒前
leona发布了新的文献求助10
13秒前
14秒前
Meteor636发布了新的文献求助10
14秒前
Maestro_S应助fafafa采纳,获得10
16秒前
hh完成签到 ,获得积分10
18秒前
孤独的鹰完成签到,获得积分10
18秒前
19秒前
web发布了新的文献求助10
20秒前
小小鱼完成签到,获得积分10
20秒前
Swin完成签到,获得积分10
21秒前
小远远完成签到,获得积分10
22秒前
23秒前
宁好完成签到 ,获得积分10
23秒前
刘一严完成签到 ,获得积分10
23秒前
WYQX完成签到,获得积分10
24秒前
yangyangll发布了新的文献求助10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5741989
求助须知:如何正确求助?哪些是违规求助? 5404909
关于积分的说明 15343645
捐赠科研通 4883431
什么是DOI,文献DOI怎么找? 2625021
邀请新用户注册赠送积分活动 1573893
关于科研通互助平台的介绍 1530838