A Hybrid Machine Learning Method for the De-identification of Un-Structured Narrative Clinical Text in Multi-center Chinese Electronic Medical Records Data

电子病历 人工智能 病历 前提 支持向量机 机器学习 中心(范畴论) 计算机科学 鉴定(生物学) 自然语言处理 情报检索 医学 化学 哲学 放射科 互联网隐私 语言学 植物 生物 结晶学
作者
Meng Jin,Kai Zhang,Yunhaonan Yang,Shuanglian Xie,Kai Song,Yonghua Hu,Xiaoyuan Bao
标识
DOI:10.1109/icbk.2019.00023
摘要

The premise of the full use of unstructured electronic medical records is to maintain the fully protection of a patient's information privacy. Presently, in prior of processing the electronic medical record date, identification and removing of relevant information which can be used to identify a patient is a research hotspot nowadays. There are very few methods in de-identification of Chinese electronic medical records and their cross-center performance is poor. Therefore we develop a de-identification method which is a mixture of rule-based methods and machine learning methods. The method was tested on 700 electronic medical records from six hospitals. Five-fold cross test was used to evaluate the results of c5.0, Random Forest, SVM and XGBOOST. Leave-one-out test was used to evaluate CRF. And the F1 Measure of machine learning reached 91.18% in PHI_Names, 98.21% in PHI_MEDICALID, 95.74% in PHI_OTHERNFC, 97.14% in PHI_GEO, 89.19% in PHI_DATES, and 91.49% in PHI_TEL. And the F1 Measure of rule-based methods reached 93.00% in PHI_Names, 97.00% in PHI_MEDICALID, 97.00% in PHI_OTHERNFC, 97.00% in PHI_GEO, 96.00% in PHI_DATES, and 89.00% in PHI_TEL.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
浮游应助X_X采纳,获得10
3秒前
月见清和发布了新的文献求助10
4秒前
4秒前
6秒前
fairy发布了新的文献求助10
6秒前
6秒前
英俊的铭应助kk采纳,获得10
10秒前
所所应助xia采纳,获得10
11秒前
平生欢完成签到 ,获得积分10
11秒前
11秒前
11秒前
深情安青应助1233采纳,获得10
12秒前
Gaolongzhen完成签到 ,获得积分10
12秒前
13秒前
充电宝应助迷路雨寒采纳,获得30
14秒前
15秒前
15秒前
量子星尘发布了新的文献求助10
16秒前
16秒前
16秒前
欸嘿完成签到,获得积分10
16秒前
17秒前
17秒前
17秒前
18秒前
21秒前
友好谷蓝发布了新的文献求助10
21秒前
21秒前
刘bait发布了新的文献求助10
21秒前
jy发布了新的文献求助10
22秒前
善学以致用应助木有鱼丸采纳,获得10
22秒前
研友_VZG7GZ应助科研通管家采纳,获得10
22秒前
传奇3应助科研通管家采纳,获得10
22秒前
玖熙发布了新的文献求助10
22秒前
彭于晏应助科研通管家采纳,获得10
22秒前
华仔应助科研通管家采纳,获得10
22秒前
浮游应助科研通管家采纳,获得10
22秒前
Return应助科研通管家采纳,获得10
23秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694056
求助须知:如何正确求助?哪些是违规求助? 5095485
关于积分的说明 15212871
捐赠科研通 4850756
什么是DOI,文献DOI怎么找? 2601983
邀请新用户注册赠送积分活动 1553785
关于科研通互助平台的介绍 1511770