更安全的
运输工程
大都市区
计算机科学
毒物控制
特征(语言学)
警报
工程类
地理
计算机安全
环境卫生
语言学
医学
哲学
航空航天工程
考古
作者
Amir Bahador Parsa,Ali Movahedi,Homa Taghipour,Sybil Derrible,Abolfazl Mohammadian
标识
DOI:10.1016/j.aap.2019.105405
摘要
Detecting traffic accidents as rapidly as possible is essential for traffic safety. In this study, we use eXtreme Gradient Boosting (XGBoost)—a Machine Learning (ML) technique—to detect the occurrence of accidents using a set of real time data comprised of traffic, network, demographic, land use, and weather features. The data used from the Chicago metropolitan expressways was collected between December 2016 and December 2017, and it includes 244 traffic accidents and 6073 non-accident cases. In addition, SHAP (SHapley Additive exPlanation) is employed to interpret the results and analyze the importance of individual features. The results show that XGBoost can detect accidents robustly with an accuracy, detection rate, and a false alarm rate of 99 %, 79 %, and 0.16 %, respectively. Several traffic related features, especially difference of speed between 5 min before and 5 min after an accident, are found to have relatively more impact on the occurrence of accidents. Furthermore, a feature dependency analysis is conducted for three pairs of features. First, average daily traffic and speed after accidents/non-accidents time at the upstream location are interpreted jointly. Then, distance to Central Business District and residential density are analyzed. Finally, speed after accidents/non-accidents time at upstream location and speed after accidents/non-accidents time at downstream location are evaluated with respect to the model’s output.
科研通智能强力驱动
Strongly Powered by AbleSci AI