Exploring Large-scale Public Medical Image Datasets

计算机科学 人工智能 比例(比率) 图像(数学) 数据科学 情报检索 地图学 地理
作者
Luke Oakden‐Rayner
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:27 (1): 106-112 被引量:177
标识
DOI:10.1016/j.acra.2019.10.006
摘要

Medical artificial intelligence systems are dependent on well characterized large-scale datasets. Recently released public datasets have been of great interest to the field, but pose specific challenges due to the disconnect they cause between data generation and data usage, potentially limiting the utility of these datasets.We visually explore two large public datasets, to determine how accurate the provided labels are and whether other subtle problems exist. The ChestXray14 dataset contains 112,120 frontal chest films, and the Musculoskeletal Radiology (MURA) dataset contains 40,561 upper limb radiographs. A subset of around 700 images from both datasets was reviewed by a board-certified radiologist, and the quality of the original labels was determined.The ChestXray14 labels did not accurately reflect the visual content of the images, with positive predictive values mostly between 10% and 30% lower than the values presented in the original documentation. There were other significant problems, with examples of hidden stratification and label disambiguation failure. The MURA labels were more accurate, but the original normal/abnormal labels were inaccurate for the subset of cases with degenerative joint disease, with a sensitivity of 60% and a specificity of 82%.Visual inspection of images is a necessary component of understanding large image datasets. We recommend that teams producing public datasets should perform this important quality control procedure and include a thorough description of their findings, along with an explanation of the data generating procedures and labeling rules, in the documentation for their datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
银海里的玫瑰_完成签到 ,获得积分10
1秒前
伊笙完成签到 ,获得积分10
4秒前
herpes完成签到 ,获得积分10
6秒前
9秒前
糖宝完成签到 ,获得积分10
26秒前
xiaoyi完成签到 ,获得积分10
32秒前
zh完成签到 ,获得积分10
35秒前
踢球的孩子完成签到 ,获得积分10
36秒前
靓仔我来帮你完成签到,获得积分10
36秒前
38秒前
科研通AI5应助科研通管家采纳,获得10
38秒前
isedu完成签到,获得积分10
39秒前
41秒前
波西米亚完成签到,获得积分10
43秒前
量子星尘发布了新的文献求助150
55秒前
Veronica完成签到,获得积分10
58秒前
我独舞完成签到 ,获得积分10
1分钟前
Kevin完成签到,获得积分10
1分钟前
unfeeling8完成签到 ,获得积分10
1分钟前
bigpluto完成签到,获得积分10
1分钟前
1分钟前
玉yu完成签到 ,获得积分10
1分钟前
George完成签到,获得积分10
1分钟前
SSDlk完成签到,获得积分10
1分钟前
zzz发布了新的文献求助10
1分钟前
缓慢的灵枫完成签到 ,获得积分10
1分钟前
田野的小家庭完成签到 ,获得积分10
1分钟前
君看一叶舟完成签到 ,获得积分10
1分钟前
无畏完成签到 ,获得积分10
1分钟前
风雨霖霖完成签到 ,获得积分10
1分钟前
1分钟前
mark33442完成签到,获得积分10
1分钟前
professorY完成签到 ,获得积分10
1分钟前
行云流水完成签到,获得积分10
1分钟前
然来溪完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
jlwang发布了新的文献求助10
1分钟前
Lemenchichi完成签到,获得积分10
1分钟前
lql完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960155
求助须知:如何正确求助?哪些是违规求助? 3506291
关于积分的说明 11128858
捐赠科研通 3238457
什么是DOI,文献DOI怎么找? 1789736
邀请新用户注册赠送积分活动 871870
科研通“疑难数据库(出版商)”最低求助积分说明 803095