亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Exploring Large-scale Public Medical Image Datasets

计算机科学 人工智能 比例(比率) 图像(数学) 数据科学 情报检索 地图学 地理
作者
Luke Oakden‐Rayner
出处
期刊:Academic Radiology [Elsevier]
卷期号:27 (1): 106-112 被引量:177
标识
DOI:10.1016/j.acra.2019.10.006
摘要

Medical artificial intelligence systems are dependent on well characterized large-scale datasets. Recently released public datasets have been of great interest to the field, but pose specific challenges due to the disconnect they cause between data generation and data usage, potentially limiting the utility of these datasets.We visually explore two large public datasets, to determine how accurate the provided labels are and whether other subtle problems exist. The ChestXray14 dataset contains 112,120 frontal chest films, and the Musculoskeletal Radiology (MURA) dataset contains 40,561 upper limb radiographs. A subset of around 700 images from both datasets was reviewed by a board-certified radiologist, and the quality of the original labels was determined.The ChestXray14 labels did not accurately reflect the visual content of the images, with positive predictive values mostly between 10% and 30% lower than the values presented in the original documentation. There were other significant problems, with examples of hidden stratification and label disambiguation failure. The MURA labels were more accurate, but the original normal/abnormal labels were inaccurate for the subset of cases with degenerative joint disease, with a sensitivity of 60% and a specificity of 82%.Visual inspection of images is a necessary component of understanding large image datasets. We recommend that teams producing public datasets should perform this important quality control procedure and include a thorough description of their findings, along with an explanation of the data generating procedures and labeling rules, in the documentation for their datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
阿泽完成签到,获得积分10
10秒前
哈哈嘻嘻完成签到,获得积分10
18秒前
ChenW.完成签到,获得积分10
21秒前
23秒前
哈哈哈发布了新的文献求助10
29秒前
mumu完成签到 ,获得积分10
36秒前
小二郎应助dzll采纳,获得10
39秒前
稳重的寒梦完成签到,获得积分20
39秒前
Jasper应助快乐的慕青采纳,获得10
40秒前
45秒前
慕青应助哈哈哈采纳,获得10
47秒前
dzll发布了新的文献求助10
50秒前
53秒前
江上烟发布了新的文献求助10
55秒前
彦子完成签到 ,获得积分10
57秒前
1分钟前
情怀应助江上烟采纳,获得30
1分钟前
ring发布了新的文献求助10
1分钟前
ring完成签到,获得积分20
1分钟前
1分钟前
1分钟前
栗子应助勤劳怜寒采纳,获得10
1分钟前
柔弱紊发布了新的文献求助10
1分钟前
小蘑菇应助rain采纳,获得10
1分钟前
1分钟前
阳光的访烟完成签到,获得积分20
1分钟前
1分钟前
dax大雄完成签到 ,获得积分10
1分钟前
2分钟前
勤劳怜寒完成签到,获得积分10
2分钟前
cheng完成签到,获得积分10
2分钟前
zhxi完成签到,获得积分20
2分钟前
zhxi发布了新的文献求助10
2分钟前
NS完成签到,获得积分10
2分钟前
科目三应助wang采纳,获得10
2分钟前
2分钟前
dormraider完成签到,获得积分10
2分钟前
2分钟前
3分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3516334
求助须知:如何正确求助?哪些是违规求助? 3098575
关于积分的说明 9240082
捐赠科研通 2793695
什么是DOI,文献DOI怎么找? 1533176
邀请新用户注册赠送积分活动 712599
科研通“疑难数据库(出版商)”最低求助积分说明 707384