DSTP-RNN: A dual-stage two-phase attention-based recurrent neural network for long-term and multivariate time series prediction

循环神经网络 计算机科学 多元统计 系列(地层学) 人工智能 依赖关系(UML) 时间序列 机器学习 对偶(语法数字) 期限(时间) 人工神经网络 时域 数据挖掘 艺术 文学类 物理 古生物学 生物 量子力学 计算机视觉
作者
Yeqi Liu,Chuanyang Gong,Ling Yang,Yingyi Chen
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:143: 113082-113082 被引量:298
标识
DOI:10.1016/j.eswa.2019.113082
摘要

Long-term prediction of multivariate time series is still an important but challenging problem. The key to solve this problem is capturing (1) the spatial correlations at the same time, (2) the spatio-temporal relationships at different times, and (3) long-term dependency of the temporal relationships between different series. Attention-based recurrent neural networks (RNN) can effectively represent and learn the dynamic spatio-temporal relationships between exogenous series and target series, but they only perform well in one-step time prediction and short-term time prediction. In this paper, inspired by human attention mechanism including the dual-stage two-phase (DSTP) model and the influence mechanism of target information and non-target information, we propose DSTP-based RNN (DSTP-RNN) and DSTP-RNN-Ⅱ respectively for long-term time series prediction. Specifically, we first propose the DSTP-based structure to enhance the spatial correlations between exogenous series. The first phase produces violent but decentralized response weight, while the second phase leads to stationary and concentrated response weight. Then, we employ multiple attentions on target series to boost the long-term dependency. Finally, we study the performance of deep spatial attention mechanism and provide interpretation. Experimental results demonstrate that the present work can be successfully used to develop expert or intelligent systems for a wide range of applications, with state-of-the-art performances superior to nine baseline methods on four datasets in the fields of energy, finance, environment and medicine, respectively. Overall, the present work carries a significant value not merely in the domain of machine intelligence and deep learning, but also in the fields of many applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YSK819完成签到 ,获得积分10
刚刚
xuzj完成签到,获得积分10
刚刚
刚刚
S飞完成签到 ,获得积分10
刚刚
安和桥发布了新的文献求助10
1秒前
wei123456完成签到,获得积分10
1秒前
duolaAmeng完成签到,获得积分10
2秒前
3秒前
我超爱cs发布了新的文献求助30
3秒前
张瀚文发布了新的文献求助10
3秒前
bxhdb完成签到,获得积分10
3秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
在水一方应助LlLly采纳,获得10
5秒前
babylow完成签到,获得积分10
5秒前
满意沛槐完成签到 ,获得积分10
5秒前
Lucas完成签到,获得积分10
7秒前
ding完成签到,获得积分10
7秒前
David完成签到,获得积分10
7秒前
8秒前
8秒前
9秒前
Sew东坡完成签到,获得积分10
9秒前
浮笙完成签到,获得积分10
9秒前
三叶草完成签到,获得积分10
10秒前
10秒前
青牛完成签到 ,获得积分10
10秒前
10秒前
TAN完成签到,获得积分10
11秒前
xhh完成签到,获得积分10
11秒前
贪玩的莫英完成签到,获得积分10
11秒前
12秒前
ztt完成签到,获得积分10
12秒前
老姚完成签到,获得积分10
12秒前
万花谷完成签到,获得积分10
12秒前
LYZ完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
13秒前
1234完成签到,获得积分10
13秒前
Levus发布了新的文献求助10
14秒前
14秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Greene's Protective Groups in Organic Synthesis 2025 600
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3666701
求助须知:如何正确求助?哪些是违规求助? 3225657
关于积分的说明 9764320
捐赠科研通 2935460
什么是DOI,文献DOI怎么找? 1607736
邀请新用户注册赠送积分活动 759338
科研通“疑难数据库(出版商)”最低求助积分说明 735281