Optimization of the nitrogen fertilizer schedule of maize under drip irrigation in Jilin, China, based on DSSAT and GA

DSSAT公司 肥料 环境科学 地铁列车时刻表 灌溉 产量(工程) 校准 农学 农业工程 数学 计算机科学 统计 工程类 生物 材料科学 冶金 操作系统
作者
Yu Bai,Jinhua Gao
出处
期刊:Agricultural Water Management [Elsevier]
卷期号:244: 106555-106555 被引量:34
标识
DOI:10.1016/j.agwat.2020.106555
摘要

Determining how to optimize a scientific and efficient farmland nitrogen (N) fertilizer schedule by combining existing technology is currently a hot topic. Maize is one of the major crops in China, and enhancing the yield of maize is conducive to ensuring China's food security. In this study, the central region of Jilin Province was adopted as the research object, and a three-year (2014–2016) field experiment was performed. The data from 2014 were used to calibrate the DSSAT model, and the data from 2015 were used for validation. After calibration and validation, the DSSAT model and a genetic algorithm (GA) were used to optimize the N fertilizer schedule of maize under 20 years (1973–1992) of meteorological data for Changchun. The experimental data from 2016 were used to validate the results of the optimized N fertilizer schedule. As revealed from the results, the DSSAT model effectively simulated the growth and development of maize under drip irrigation and rain-fed methods in Changchun. The model was first calibrated based on the crop yield, phenological phases and soil moisture and N content data, and good agreement was achieved between the simulated and measured data in both the calibration and validation periods. In the calibration and validation periods, the normalized root mean square error (nRMSE) for grain yield was 1.45% and 1.61%, respectively. The total amount in the new N fertilizer schedule is 198 kg/ha, which is slightly higher than that in the traditional schedule (187.5 kg/ha), and the yield of maize in the proposed N fertilizer schedule was upregulated by 7–9% compared with the conventional N fertilization schedule in the experimental results for 2016. Through an analysis of economic benefits, drip irrigation is better than the rain-fed method, and the optimized N fertilization schedule will make the economic benefits more significant (8.4%–12.4% increase). Additionally, this method is easier to combine with remote sensing and weather forecasting, forming a real-time method of field management optimization schedule decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Marchi完成签到 ,获得积分10
1秒前
打打应助张文涛采纳,获得10
1秒前
naonao发布了新的文献求助10
2秒前
2秒前
科研通AI2S应助叶子采纳,获得10
3秒前
5秒前
5秒前
丰富的小海豚完成签到,获得积分20
8秒前
专注的小松鼠完成签到,获得积分10
9秒前
芝士发布了新的文献求助10
10秒前
在水一方应助哈哈采纳,获得10
11秒前
11秒前
Jasper应助晨曦采纳,获得10
11秒前
无辜又菡发布了新的文献求助10
11秒前
11秒前
Jenny完成签到,获得积分10
11秒前
科研体育生完成签到 ,获得积分10
11秒前
Vicky完成签到,获得积分10
13秒前
叶子完成签到,获得积分10
13秒前
Daria完成签到,获得积分20
13秒前
Jasper应助NOEYEDEER采纳,获得10
15秒前
落寞映易完成签到,获得积分10
15秒前
邓佳鑫Alan应助迷糊的小亮采纳,获得10
16秒前
16秒前
陶醉的熊完成签到,获得积分10
17秒前
17秒前
psybrain9527发布了新的文献求助10
18秒前
秦小旋儿应助呆瓜采纳,获得20
18秒前
阿嚏完成签到,获得积分10
18秒前
酷波er应助zhu ning采纳,获得10
19秒前
美满的蛋挞完成签到 ,获得积分10
19秒前
Singularity应助炙热的灵阳采纳,获得20
20秒前
尊敬的蚂蚁完成签到,获得积分20
20秒前
英仙座发布了新的文献求助10
20秒前
11发布了新的文献求助30
22秒前
gao456789发布了新的文献求助10
22秒前
林薯条完成签到,获得积分10
23秒前
大个应助哆啦梦采纳,获得10
24秒前
执着的若灵完成签到,获得积分10
25秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Handbook of Qualitative Research 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3129419
求助须知:如何正确求助?哪些是违规求助? 2780198
关于积分的说明 7746898
捐赠科研通 2435421
什么是DOI,文献DOI怎么找? 1294067
科研通“疑难数据库(出版商)”最低求助积分说明 623580
版权声明 600554