Reversibly Transforming a Highly Swollen Polyelectrolyte Hydrogel to an Extremely Tough One and its Application as a Tubular Grasper

聚电解质 材料科学 自愈水凝胶 纳米技术 化学工程 复合材料 聚合物 高分子化学 工程类
作者
Hongjun Yu,Si Yu Zheng,Lingtao Fang,Zhimin Ying,Miao Du,Jing Wang,Keke Ren,Zi Liang Wu,Qiang Zheng
出处
期刊:Advanced Materials [Wiley]
卷期号:32 (49) 被引量:167
标识
DOI:10.1002/adma.202005171
摘要

Abstract Poly(2‐acrylamido‐2‐methyl‐1‐propanesulfonic acid) and its copolymer hydrogels are typical polyelectrolyte gels with extremely high swelling capacity that are widely used in industry. It's common to consider these hydrogels as weak materials that are difficult to toughen. Reported here is a facile strategy to transform swollen and weak poly(acrylamide‐ co ‐2‐acrylamido‐2‐methyl‐1‐propanesulfonic acid) [P(AAm‐ co ‐AMPS)] hydrogels to tough ones by forming strong sulfonate–Zr 4+ metal‐coordination complexes. The resultant hydrogels with moderate water content possess high stiffness, strength, and fracture energy, which can be tuned over 3–4 orders of magnitude by controlling the composition and metal‐to‐ligand ratio. Owing to the dynamic nature of the coordination bonds, these hydrogels show rate‐ and temperature‐dependent mechanical performances, as well as good self‐recovery properties. This strategy is universal, as manifested by the drastically improved mechanical properties of hydrogels of various natural and synthetic sulfonate‐containing polymers. The toughened hydrogels can be converted to the original swollen ones by breaking up the metal‐coordination complexes in alkaline solutions. The reversible brittle–tough transition and concomitant dramatic volume change of polyelectrolyte hydrogels afford diverse applications, as demonstrated by the design of a tubular grasper with holding force a thousand times its own weight for objects with different geometries. It is envisioned that these hydrogels enable versatile applications in the biomedical and engineering fields.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zzz发布了新的文献求助20
刚刚
Matrix发布了新的文献求助10
1秒前
1秒前
完美的天空应助研友_5Zl9D8采纳,获得30
1秒前
Vivi完成签到,获得积分10
2秒前
科研通AI2S应助帅气小鸽子采纳,获得30
2秒前
3秒前
WJ1989完成签到,获得积分10
3秒前
思源应助金。。。采纳,获得10
4秒前
4秒前
4秒前
大模型应助wxyllxx采纳,获得10
5秒前
热爱zx的小陈完成签到,获得积分10
5秒前
5秒前
在水一方应助张奕冰采纳,获得10
6秒前
bkagyin应助白衣修身采纳,获得10
6秒前
你是谁完成签到,获得积分10
6秒前
6秒前
6秒前
zwhy完成签到,获得积分10
6秒前
123456完成签到,获得积分10
7秒前
windli发布了新的文献求助10
7秒前
ww发布了新的文献求助10
7秒前
干净的烧鹅完成签到,获得积分10
7秒前
orixero应助王飞跃采纳,获得10
8秒前
勤劳雁完成签到,获得积分10
8秒前
8秒前
9秒前
自由的尔蓉完成签到 ,获得积分10
9秒前
9秒前
9秒前
9秒前
Xiao完成签到,获得积分10
10秒前
10秒前
10秒前
SongRD发布了新的文献求助10
11秒前
yunyii完成签到,获得积分10
11秒前
早点毕业完成签到,获得积分20
11秒前
11秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135520
求助须知:如何正确求助?哪些是违规求助? 2786434
关于积分的说明 7777268
捐赠科研通 2442340
什么是DOI,文献DOI怎么找? 1298524
科研通“疑难数据库(出版商)”最低求助积分说明 625143
版权声明 600847