Reversibly Transforming a Highly Swollen Polyelectrolyte Hydrogel to an Extremely Tough One and its Application as a Tubular Grasper

聚电解质 材料科学 磺酸盐 自愈水凝胶 共聚物 肿胀 的 脆性 化学工程 复合材料 聚合物 高分子化学 工程类 冶金
作者
Hai Yu,Si Yu Zheng,Lingtao Fang,Zhimin Ying,Miao Du,Jing Wang,Ke‐feng Ren,Zi Liang Wu,Qiang Zheng
出处
期刊:Advanced Materials [Wiley]
卷期号:32 (49) 被引量:210
标识
DOI:10.1002/adma.202005171
摘要

Abstract Poly(2‐acrylamido‐2‐methyl‐1‐propanesulfonic acid) and its copolymer hydrogels are typical polyelectrolyte gels with extremely high swelling capacity that are widely used in industry. It's common to consider these hydrogels as weak materials that are difficult to toughen. Reported here is a facile strategy to transform swollen and weak poly(acrylamide‐ co ‐2‐acrylamido‐2‐methyl‐1‐propanesulfonic acid) [P(AAm‐ co ‐AMPS)] hydrogels to tough ones by forming strong sulfonate–Zr 4+ metal‐coordination complexes. The resultant hydrogels with moderate water content possess high stiffness, strength, and fracture energy, which can be tuned over 3–4 orders of magnitude by controlling the composition and metal‐to‐ligand ratio. Owing to the dynamic nature of the coordination bonds, these hydrogels show rate‐ and temperature‐dependent mechanical performances, as well as good self‐recovery properties. This strategy is universal, as manifested by the drastically improved mechanical properties of hydrogels of various natural and synthetic sulfonate‐containing polymers. The toughened hydrogels can be converted to the original swollen ones by breaking up the metal‐coordination complexes in alkaline solutions. The reversible brittle–tough transition and concomitant dramatic volume change of polyelectrolyte hydrogels afford diverse applications, as demonstrated by the design of a tubular grasper with holding force a thousand times its own weight for objects with different geometries. It is envisioned that these hydrogels enable versatile applications in the biomedical and engineering fields.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZG完成签到,获得积分10
1秒前
顾矜应助LI采纳,获得20
2秒前
3秒前
3秒前
ASD完成签到,获得积分10
3秒前
4秒前
999999完成签到,获得积分10
4秒前
5秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
共享精神应助科研通管家采纳,获得10
7秒前
7秒前
nuaa_shy应助科研通管家采纳,获得10
7秒前
维C应助科研通管家采纳,获得10
7秒前
7秒前
8秒前
共享精神应助科研通管家采纳,获得10
8秒前
HH应助科研通管家采纳,获得10
8秒前
nuaa_shy应助科研通管家采纳,获得10
8秒前
8秒前
汉堡包应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
8秒前
多情迎南发布了新的文献求助10
8秒前
8秒前
HH应助科研通管家采纳,获得10
8秒前
汉堡包应助科研通管家采纳,获得10
8秒前
lizishu应助科研通管家采纳,获得10
8秒前
JamesPei应助科研通管家采纳,获得10
8秒前
8秒前
DUDUDUDU完成签到,获得积分10
8秒前
研友_VZG7GZ应助科研通管家采纳,获得10
8秒前
酷波er应助科研通管家采纳,获得10
8秒前
8秒前
天天快乐应助科研通管家采纳,获得10
9秒前
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
9秒前
慕青应助科研通管家采纳,获得30
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5783763
求助须知:如何正确求助?哪些是违规求助? 5678943
关于积分的说明 15462183
捐赠科研通 4913180
什么是DOI,文献DOI怎么找? 2644538
邀请新用户注册赠送积分活动 1592293
关于科研通互助平台的介绍 1546946