交替链格孢
可滴定酸
采后
化学
冷库
食品科学
园艺
植物
生物
作者
Gonzalo Hernández-López,Rosa Isela Ventura‐Aguilar,Zormy Nacary Correa‐Pacheco,Silvia Bautista‐Baños,Laura Leticia Barrera‐Necha
标识
DOI:10.1016/j.ijbiomac.2020.10.094
摘要
Bell peppers are susceptible to postharvest diseases caused by the fungus Alternaria alternata that limit its commercialization. Nowadays, nanotechnology allows encapsulation of natural components such as terpenes. The objective of this work was to develop chitosan nanoparticles with α-pinene (P-CSNPs) and a nanostructured edible coating (EC-P-CSNPs). The P-CSNPs were characterized by TEM (Transmission Electron Microscopy), FTIR (Fourier-Transform Infrared Spectroscopy), DLS (Dynamic Light Scattering) and ζ potential. The P-CSNPs and the EC-P-CSNPs were applied to the bell peppers inoculated with A. alternata under cold storage for either 0, 7, 14 and 21 days at 12 ± 2 °C followed by a shelf-life period of 5 days at 20 ± 2 °C to assess their post-harvest quality. Nanoparticles size was 3.9 ± 0.5 nm and the ζ potential value was between 13.4 and 14.9 mV. The incorporation of α-pinene was corroborated by FTIR. Significant changes in weight loss were obtained for P-CSNPs and EC-P-CSNPs at percentage of 3 and 6% compared to the control. For firmness, color, total soluble solids, titratable acids, maturity index, total flavonoid content and antioxidant capacity, no differences were found. Total carotenes were higher in bell peppers without A. alternata. The chitosan nanoparticles and edible coating inhibited A. alternata during the cold storage period of bell pepper and preserved the physicochemical quality.
科研通智能强力驱动
Strongly Powered by AbleSci AI