Cognitive spectroscopy for evaluating Chinese black tea grades (Camellia sinensis): near‐infrared spectroscopy and evolutionary algorithms

山茶 光谱学 主成分分析 特征选择 人工智能 线性判别分析 支持向量机 规范化(社会学) 模式识别(心理学) 数学 算法 计算机科学 生物 物理 植物 社会学 人类学 量子力学
作者
Guangxin Ren,Yemei Sun,Menghui Li,Jingming Ning,Zhengzhu Zhang
出处
期刊:Journal of the Science of Food and Agriculture [Wiley]
卷期号:100 (10): 3950-3959 被引量:30
标识
DOI:10.1002/jsfa.10439
摘要

Grading represents an essential criterion for the quality assurance of black tea. The main objectives of the study were to develop a highly robust model for Chinese black tea of seven grades based on cognitive spectroscopy.Cognitive spectroscopy was proposed to combine near-infrared spectroscopy (NIRS) with machine learning and evolutionary algorithms, selected feature information from complex spectral data and show the best results without human intervention. The NIRS measuring system was used to obtain the spectra of Chinese black tea samples of seven grades. The spectra acquired were preprocessed by standard normal variate transformation (SNV), multiplicative scatter correction (MSC) and minimum/maximum normalization (MIN/MAX), and the optimal pretreating method was implemented using principal component analysis combined with linear discriminant analysis algorithm. Three feature selection evolutionary algorithms, which were a genetic algorithm (GA), simulated annealing (SA) and particle swarm optimization (PSO), were compared to search the best preprocessed characteristic wavelengths. Cognitive models of Chinese black tea ranks were constructed using extreme learning machine (ELM), K-nearest neighbor (KNN) and support vector machine (SVM) methods based on the selected characteristic variables. Experimental results revealed that the PSO-SVM model showed the best predictive performance with the correlation coefficients of prediction set (Rp ) of 0.9838, the root mean square error of prediction (RMSEP) of 0.0246, and the correct discriminant rate (CDR) of 98.70%. The extracted feature wavelengths were only occupying 0.18% of the origin.The overall results demonstrated that cognitive spectroscopy could be utilized as a rapid strategy to identify Chinese black tea grades. © 2020 Society of Chemical Industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助个性的荆采纳,获得10
刚刚
无花果应助zzzkk采纳,获得10
刚刚
刚刚
风趣紫发布了新的文献求助10
刚刚
1秒前
半夏完成签到,获得积分10
1秒前
1秒前
GuoYongXu完成签到,获得积分10
1秒前
2秒前
3秒前
余裕发布了新的文献求助10
4秒前
xzj7789210发布了新的文献求助20
4秒前
许敬翎完成签到,获得积分20
5秒前
5秒前
甄姬唔恨赢完成签到,获得积分10
5秒前
5秒前
li发布了新的文献求助10
6秒前
Hannah1117发布了新的文献求助10
6秒前
7秒前
Young完成签到,获得积分10
7秒前
飘雪发布了新的文献求助10
7秒前
852应助苏邑采纳,获得10
7秒前
9秒前
风趣紫发布了新的文献求助10
9秒前
10秒前
小二郎应助泯珉采纳,获得10
10秒前
10秒前
汗汗发布了新的文献求助10
11秒前
11秒前
华仔应助怡然嚣采纳,获得10
12秒前
12秒前
13秒前
13秒前
13秒前
小乔同学发布了新的文献求助10
14秒前
浮游应助舒服的灰狼采纳,获得10
14秒前
14秒前
qinqiny完成签到 ,获得积分10
15秒前
研友_VZG7GZ应助李联洪采纳,获得10
15秒前
一小位同学完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5352940
求助须知:如何正确求助?哪些是违规求助? 4485618
关于积分的说明 13963907
捐赠科研通 4385768
什么是DOI,文献DOI怎么找? 2409561
邀请新用户注册赠送积分活动 1401897
关于科研通互助平台的介绍 1375605