Cognitive spectroscopy for evaluating Chinese black tea grades (Camellia sinensis): near‐infrared spectroscopy and evolutionary algorithms

山茶 光谱学 主成分分析 特征选择 人工智能 线性判别分析 支持向量机 规范化(社会学) 模式识别(心理学) 数学 算法 计算机科学 生物 物理 植物 量子力学 社会学 人类学
作者
Guangxin Ren,Yemei Sun,Menghui Li,Jingming Ning,Zhengzhu Zhang
出处
期刊:Journal of the Science of Food and Agriculture [Wiley]
卷期号:100 (10): 3950-3959 被引量:30
标识
DOI:10.1002/jsfa.10439
摘要

Grading represents an essential criterion for the quality assurance of black tea. The main objectives of the study were to develop a highly robust model for Chinese black tea of seven grades based on cognitive spectroscopy.Cognitive spectroscopy was proposed to combine near-infrared spectroscopy (NIRS) with machine learning and evolutionary algorithms, selected feature information from complex spectral data and show the best results without human intervention. The NIRS measuring system was used to obtain the spectra of Chinese black tea samples of seven grades. The spectra acquired were preprocessed by standard normal variate transformation (SNV), multiplicative scatter correction (MSC) and minimum/maximum normalization (MIN/MAX), and the optimal pretreating method was implemented using principal component analysis combined with linear discriminant analysis algorithm. Three feature selection evolutionary algorithms, which were a genetic algorithm (GA), simulated annealing (SA) and particle swarm optimization (PSO), were compared to search the best preprocessed characteristic wavelengths. Cognitive models of Chinese black tea ranks were constructed using extreme learning machine (ELM), K-nearest neighbor (KNN) and support vector machine (SVM) methods based on the selected characteristic variables. Experimental results revealed that the PSO-SVM model showed the best predictive performance with the correlation coefficients of prediction set (Rp ) of 0.9838, the root mean square error of prediction (RMSEP) of 0.0246, and the correct discriminant rate (CDR) of 98.70%. The extracted feature wavelengths were only occupying 0.18% of the origin.The overall results demonstrated that cognitive spectroscopy could be utilized as a rapid strategy to identify Chinese black tea grades. © 2020 Society of Chemical Industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
英俊的铭应助燕子采纳,获得50
3秒前
zhangyu应助hjb采纳,获得10
4秒前
华仔应助W~舞采纳,获得10
4秒前
UniTTEC9560发布了新的文献求助10
4秒前
5秒前
君乐宝发布了新的文献求助10
7秒前
7秒前
赵银志发布了新的文献求助10
7秒前
8秒前
ding应助老实外绣采纳,获得10
8秒前
bkagyin应助淡酒采纳,获得10
9秒前
10秒前
独特的幻悲完成签到,获得积分10
10秒前
zhl发布了新的文献求助10
10秒前
ZY发布了新的文献求助10
11秒前
Marine发布了新的文献求助10
13秒前
大个应助昏睡的蟠桃采纳,获得10
13秒前
chentong完成签到,获得积分10
13秒前
14秒前
尊敬寒松发布了新的文献求助10
14秒前
佳佳应助迷路安雁采纳,获得10
14秒前
14秒前
15秒前
vidgers完成签到 ,获得积分10
15秒前
wxnice完成签到,获得积分10
16秒前
17秒前
赵银志完成签到,获得积分10
17秒前
君乐宝完成签到,获得积分10
17秒前
18秒前
Lucas应助蒋婷采纳,获得10
19秒前
彭于晏应助努力采纳,获得10
19秒前
zz发布了新的文献求助10
19秒前
ZY完成签到,获得积分20
20秒前
Rise发布了新的文献求助10
21秒前
eriollee完成签到 ,获得积分10
21秒前
guard发布了新的文献求助10
22秒前
26秒前
27秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993605
求助须知:如何正确求助?哪些是违规求助? 3534372
关于积分的说明 11265282
捐赠科研通 3274119
什么是DOI,文献DOI怎么找? 1806307
邀请新用户注册赠送积分活动 883118
科研通“疑难数据库(出版商)”最低求助积分说明 809712