Cognitive spectroscopy for evaluating Chinese black tea grades (Camellia sinensis): near‐infrared spectroscopy and evolutionary algorithms

山茶 光谱学 主成分分析 特征选择 人工智能 线性判别分析 支持向量机 规范化(社会学) 模式识别(心理学) 数学 算法 计算机科学 生物 物理 植物 社会学 人类学 量子力学
作者
Guangxin Ren,Yemei Sun,Menghui Li,Jingming Ning,Zhengzhu Zhang
出处
期刊:Journal of the Science of Food and Agriculture [Wiley]
卷期号:100 (10): 3950-3959 被引量:30
标识
DOI:10.1002/jsfa.10439
摘要

Grading represents an essential criterion for the quality assurance of black tea. The main objectives of the study were to develop a highly robust model for Chinese black tea of seven grades based on cognitive spectroscopy.Cognitive spectroscopy was proposed to combine near-infrared spectroscopy (NIRS) with machine learning and evolutionary algorithms, selected feature information from complex spectral data and show the best results without human intervention. The NIRS measuring system was used to obtain the spectra of Chinese black tea samples of seven grades. The spectra acquired were preprocessed by standard normal variate transformation (SNV), multiplicative scatter correction (MSC) and minimum/maximum normalization (MIN/MAX), and the optimal pretreating method was implemented using principal component analysis combined with linear discriminant analysis algorithm. Three feature selection evolutionary algorithms, which were a genetic algorithm (GA), simulated annealing (SA) and particle swarm optimization (PSO), were compared to search the best preprocessed characteristic wavelengths. Cognitive models of Chinese black tea ranks were constructed using extreme learning machine (ELM), K-nearest neighbor (KNN) and support vector machine (SVM) methods based on the selected characteristic variables. Experimental results revealed that the PSO-SVM model showed the best predictive performance with the correlation coefficients of prediction set (Rp ) of 0.9838, the root mean square error of prediction (RMSEP) of 0.0246, and the correct discriminant rate (CDR) of 98.70%. The extracted feature wavelengths were only occupying 0.18% of the origin.The overall results demonstrated that cognitive spectroscopy could be utilized as a rapid strategy to identify Chinese black tea grades. © 2020 Society of Chemical Industry.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冻结完成签到 ,获得积分10
1秒前
Zhang发布了新的文献求助10
1秒前
来自3602完成签到,获得积分10
1秒前
曾丽红完成签到,获得积分10
2秒前
2秒前
2秒前
NING完成签到,获得积分10
3秒前
4秒前
WGQ完成签到,获得积分10
4秒前
JamesPei应助89采纳,获得10
4秒前
5秒前
彩色的涵瑶完成签到,获得积分10
6秒前
体贴擎发布了新的文献求助10
6秒前
6秒前
7秒前
乐观半凡发布了新的文献求助10
7秒前
8秒前
8秒前
森活鱼块发布了新的文献求助10
8秒前
8秒前
Iris_Zhang完成签到 ,获得积分10
9秒前
9秒前
Yanglk完成签到,获得积分10
9秒前
9秒前
朱文韬完成签到,获得积分10
10秒前
10秒前
张天泽完成签到,获得积分10
11秒前
黑沧浪亭发布了新的文献求助10
11秒前
12秒前
乐乐应助乐观半凡采纳,获得10
12秒前
刚刚好完成签到,获得积分10
12秒前
Taurus_Ho发布了新的文献求助10
13秒前
fanfan发布了新的文献求助30
13秒前
辛巴先生完成签到,获得积分10
13秒前
Zhang发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助10
15秒前
whelp驳回了999应助
15秒前
JZW发布了新的文献求助10
16秒前
辰辰发布了新的文献求助10
16秒前
xingxing完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536474
求助须知:如何正确求助?哪些是违规求助? 4624146
关于积分的说明 14590801
捐赠科研通 4564532
什么是DOI,文献DOI怎么找? 2501843
邀请新用户注册赠送积分活动 1480597
关于科研通互助平台的介绍 1451838