Cognitive spectroscopy for evaluating Chinese black tea grades (Camellia sinensis): near‐infrared spectroscopy and evolutionary algorithms

山茶 光谱学 主成分分析 特征选择 人工智能 线性判别分析 支持向量机 规范化(社会学) 模式识别(心理学) 数学 算法 计算机科学 生物 物理 植物 量子力学 社会学 人类学
作者
Guangxin Ren,Yemei Sun,Menghui Li,Jingming Ning,Zhengzhu Zhang
出处
期刊:Journal of the Science of Food and Agriculture [Wiley]
卷期号:100 (10): 3950-3959 被引量:30
标识
DOI:10.1002/jsfa.10439
摘要

Grading represents an essential criterion for the quality assurance of black tea. The main objectives of the study were to develop a highly robust model for Chinese black tea of seven grades based on cognitive spectroscopy.Cognitive spectroscopy was proposed to combine near-infrared spectroscopy (NIRS) with machine learning and evolutionary algorithms, selected feature information from complex spectral data and show the best results without human intervention. The NIRS measuring system was used to obtain the spectra of Chinese black tea samples of seven grades. The spectra acquired were preprocessed by standard normal variate transformation (SNV), multiplicative scatter correction (MSC) and minimum/maximum normalization (MIN/MAX), and the optimal pretreating method was implemented using principal component analysis combined with linear discriminant analysis algorithm. Three feature selection evolutionary algorithms, which were a genetic algorithm (GA), simulated annealing (SA) and particle swarm optimization (PSO), were compared to search the best preprocessed characteristic wavelengths. Cognitive models of Chinese black tea ranks were constructed using extreme learning machine (ELM), K-nearest neighbor (KNN) and support vector machine (SVM) methods based on the selected characteristic variables. Experimental results revealed that the PSO-SVM model showed the best predictive performance with the correlation coefficients of prediction set (Rp ) of 0.9838, the root mean square error of prediction (RMSEP) of 0.0246, and the correct discriminant rate (CDR) of 98.70%. The extracted feature wavelengths were only occupying 0.18% of the origin.The overall results demonstrated that cognitive spectroscopy could be utilized as a rapid strategy to identify Chinese black tea grades. © 2020 Society of Chemical Industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清欢完成签到 ,获得积分20
刚刚
alick完成签到,获得积分10
1秒前
科研通AI2S应助拉斯特迪亚采纳,获得10
1秒前
小飞七应助jiangnan采纳,获得10
2秒前
2秒前
2秒前
独角兽完成签到 ,获得积分10
2秒前
lzqlzqlzqlzqlzq完成签到,获得积分10
3秒前
Geng完成签到,获得积分10
4秒前
4秒前
宇_完成签到,获得积分20
4秒前
香蕉觅云应助NEMO采纳,获得10
4秒前
5秒前
5秒前
星辰大海应助247793325采纳,获得20
5秒前
5秒前
灵巧荆发布了新的文献求助10
5秒前
5秒前
haimianbaobao完成签到 ,获得积分10
5秒前
6秒前
6秒前
7秒前
SAW发布了新的文献求助10
8秒前
爆米花应助LiShin采纳,获得10
8秒前
Jasper应助jxcandice采纳,获得10
9秒前
9秒前
Owen应助雾见春采纳,获得10
10秒前
aiming发布了新的文献求助10
11秒前
11秒前
11秒前
11秒前
12秒前
无辜之卉发布了新的文献求助10
12秒前
yty发布了新的文献求助10
12秒前
烟花应助卡夫卡没在海边采纳,获得10
13秒前
456发布了新的文献求助10
14秒前
传奇3应助温暖以蓝采纳,获得10
14秒前
辛勤的仰完成签到,获得积分10
14秒前
如意新晴完成签到,获得积分10
14秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794