Cognitive spectroscopy for evaluating Chinese black tea grades (Camellia sinensis): near‐infrared spectroscopy and evolutionary algorithms

山茶 光谱学 主成分分析 特征选择 人工智能 线性判别分析 支持向量机 规范化(社会学) 模式识别(心理学) 数学 算法 计算机科学 生物 物理 植物 量子力学 社会学 人类学
作者
Guangxin Ren,Yemei Sun,Menghui Li,Jingming Ning,Zhengzhu Zhang
出处
期刊:Journal of the Science of Food and Agriculture [Wiley]
卷期号:100 (10): 3950-3959 被引量:30
标识
DOI:10.1002/jsfa.10439
摘要

Grading represents an essential criterion for the quality assurance of black tea. The main objectives of the study were to develop a highly robust model for Chinese black tea of seven grades based on cognitive spectroscopy.Cognitive spectroscopy was proposed to combine near-infrared spectroscopy (NIRS) with machine learning and evolutionary algorithms, selected feature information from complex spectral data and show the best results without human intervention. The NIRS measuring system was used to obtain the spectra of Chinese black tea samples of seven grades. The spectra acquired were preprocessed by standard normal variate transformation (SNV), multiplicative scatter correction (MSC) and minimum/maximum normalization (MIN/MAX), and the optimal pretreating method was implemented using principal component analysis combined with linear discriminant analysis algorithm. Three feature selection evolutionary algorithms, which were a genetic algorithm (GA), simulated annealing (SA) and particle swarm optimization (PSO), were compared to search the best preprocessed characteristic wavelengths. Cognitive models of Chinese black tea ranks were constructed using extreme learning machine (ELM), K-nearest neighbor (KNN) and support vector machine (SVM) methods based on the selected characteristic variables. Experimental results revealed that the PSO-SVM model showed the best predictive performance with the correlation coefficients of prediction set (Rp ) of 0.9838, the root mean square error of prediction (RMSEP) of 0.0246, and the correct discriminant rate (CDR) of 98.70%. The extracted feature wavelengths were only occupying 0.18% of the origin.The overall results demonstrated that cognitive spectroscopy could be utilized as a rapid strategy to identify Chinese black tea grades. © 2020 Society of Chemical Industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小垃圾发布了新的文献求助10
1秒前
2秒前
ilaveu完成签到,获得积分10
2秒前
fatcat完成签到,获得积分10
2秒前
李嘿嘿完成签到,获得积分10
4秒前
4秒前
彭于晏应助鉨汏闫采纳,获得10
5秒前
tyhmugua发布了新的文献求助10
6秒前
kiriya发布了新的文献求助10
6秒前
8秒前
8秒前
9秒前
沫s发布了新的文献求助10
9秒前
直率的乐萱完成签到,获得积分10
9秒前
图图烤肉完成签到,获得积分10
11秒前
脑洞疼应助哈哈哈哈采纳,获得10
11秒前
11秒前
XXXXH发布了新的文献求助10
11秒前
liiy发布了新的文献求助10
11秒前
领导范儿应助明亮寻绿采纳,获得10
12秒前
zimo完成签到,获得积分10
12秒前
14秒前
wolf发布了新的文献求助10
14秒前
景茶茶完成签到 ,获得积分10
15秒前
pinkangel完成签到,获得积分10
15秒前
ziyu完成签到,获得积分10
16秒前
Jay01完成签到,获得积分10
16秒前
18秒前
巷尾花店发布了新的文献求助10
19秒前
斯文败类应助perdition采纳,获得10
19秒前
19秒前
Jay01发布了新的文献求助10
20秒前
pinkangel发布了新的文献求助10
21秒前
21秒前
星辰大海应助pokemeow采纳,获得10
22秒前
慧子完成签到,获得积分10
22秒前
23秒前
24秒前
xyyyy完成签到 ,获得积分10
24秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
山海经图录 李云中版 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3328109
求助须知:如何正确求助?哪些是违规求助? 2958209
关于积分的说明 8589546
捐赠科研通 2636464
什么是DOI,文献DOI怎么找? 1443022
科研通“疑难数据库(出版商)”最低求助积分说明 668490
邀请新用户注册赠送积分活动 655711