A chimera approach for MP-PIC simulations of dense particulate flows using large parcel size relative to the computational cell size

计算流体力学 欧拉路径 阻力 机械 CFD-DEM公司 流态化 多边形网格 物理 压力降 缩放比例 经典力学 几何学 拉格朗日 流化床 数学 热力学 数学物理
作者
Utkan Çalışkan,Sanja Mišković
出处
期刊:Chemical engineering journal advances [Elsevier BV]
卷期号:5: 100054-100054 被引量:27
标识
DOI:10.1016/j.ceja.2020.100054
摘要

The Multiphase Particle in Cell (MP-PIC) is an Eulerian-Lagrangian numerical method that resolves the particle-particle interactions using the averages mapped from the Lagrangian parcels onto the Eulerian mesh. The MPPIC's accuracy depends on mesh quality and resolution, but the mesh resolution requirements for the Computational Fluid Dynamics (CFD) fields and MP-PIC models are not in accordance. This paper proposes a chimera approach, which implements two overlapping meshes in the Lagrangian-Eulerian framework with disparate length scales - a fine mesh for the CFD fields and a coarser mesh for the MP-PIC fields. The CFD fields are mapped to the MP-PIC mesh, while the coarse mesh fields, such as solids volume fraction and momentum source of parcels, are mapped to the finer CFD mesh. The National Energy Technology Laboratory's (NETL) Small-Scale Challenge Problems-I (SSCP-I) fluidized bed case is selected for simulations and model validation. A parametric study is conducted, which considers different drag and inter-particle stress models and different solids volume fraction limits. We show that the chimera approach results in a realistic turbulent flow field for accurate drag force calculations on parcels while preserving adequate conditions for the submodels’ validity under MP-PIC. The results are in good agreement with the experimental findings, specifically the pressure drop, Eulerian average particle velocity, and granular temperature. The chimera method is developed to overcome the averaging limitations when the particle size is comparable to the cell size or when particle collisions may not be captured accurately, and a finer mesh is required for the fluid flow.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Kelly完成签到 ,获得积分10
刚刚
刚刚
迅速的迎丝完成签到,获得积分10
刚刚
Scalpel发布了新的文献求助10
刚刚
hvivi6发布了新的文献求助10
1秒前
香酥板栗完成签到,获得积分10
1秒前
1秒前
nki完成签到,获得积分10
2秒前
3秒前
小李先绅发布了新的文献求助10
3秒前
6秒前
Akim应助热心小松鼠采纳,获得10
6秒前
今后应助热心小松鼠采纳,获得10
6秒前
orixero应助热心小松鼠采纳,获得10
6秒前
CodeCraft应助热心小松鼠采纳,获得10
6秒前
充电宝应助热心小松鼠采纳,获得10
6秒前
隐形曼青应助热心小松鼠采纳,获得10
6秒前
6秒前
顾矜应助热心小松鼠采纳,获得10
6秒前
爆米花应助热心小松鼠采纳,获得10
6秒前
EvaHo完成签到,获得积分10
7秒前
9秒前
白先生完成签到,获得积分20
9秒前
zixian发布了新的文献求助10
9秒前
顾矜应助AYQ采纳,获得10
10秒前
雨天发布了新的文献求助100
11秒前
深情傀斗发布了新的文献求助10
12秒前
研友_85YJY8完成签到,获得积分10
12秒前
何以解忧完成签到,获得积分10
13秒前
风趣的爆米花完成签到,获得积分20
13秒前
kk发布了新的文献求助10
14秒前
七曜完成签到,获得积分10
14秒前
14秒前
熊大完成签到,获得积分10
15秒前
641完成签到,获得积分10
15秒前
zd完成签到,获得积分20
16秒前
小李先绅完成签到,获得积分10
16秒前
17秒前
17秒前
Owen应助sln采纳,获得10
17秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966726
求助须知:如何正确求助?哪些是违规求助? 3512179
关于积分的说明 11162302
捐赠科研通 3247077
什么是DOI,文献DOI怎么找? 1793689
邀请新用户注册赠送积分活动 874549
科研通“疑难数据库(出版商)”最低求助积分说明 804429